Skip to main content
Log in

Multiplex RT-PCR method for the analysis of the expression of human sialyltransferases: application to breast cancer cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In many cases of human cancer, the appearance of hypersialylated glycan structures is related to a precise stage of the disease; this may depend on altered regulation of one or more sialyltransferases genes. Since several distinct sialyltransferase enzymes arising from different unique genes transfer sialic acid residues in the same linkage onto the same acceptor, it is impossible to precisely determine which enzyme is involved in the observed phenotype based on enzymatic assays. We have developed a very sensitive and highly reproducible multiplex reverse transcriptase-polymerase chain reaction technique in order to monitor the expression of four human sialyltransferases genes ST6Gal I, ST3Gal I, ST3Gal III and ST3Gal IV in small cell samples. Multiplex PCR amplification using specific primers for each sialyltransferase and detection of amplification products by polyacrylamide gel electrophoresis is a method that is fast and easy to handle and has proven to be useful for establishing sialyltransferase patterns of expression in breast immortalized cell line HBL100 as well as in breast cancer cell lines MCF-7/6, MCF-7/AZ and MDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori SI (1981) Ann Rev Biochem 50: 733–64.

    Google Scholar 

  2. Fukuda M, Fukuda MN (1984) In The Biology of Glycoproteins (Ivatt RJ ed) pp 183–234. New York: Plenum Publishing Corp.

    Google Scholar 

  3. Feizi T (1985) Nature 314: 53–57.

    Google Scholar 

  4. Jessell TM, Hynes MA, Dodd J (1990) Ann Rev Neurosci 13: 227–55.

    Google Scholar 

  5. Varki A (1993) Glycobiology 3: 97–130.

    Google Scholar 

  6. Shaper NL, Harduin-Lepers A, Shaper JH (1994) J Biol Chem 269: 25165–71.

    Google Scholar 

  7. Vertino-Bell A, Ren J, Black JD, Lau JTY (1994) Dev Biol 165: 126–36.

    Google Scholar 

  8. Oka S, Brusés JL, Nelson RW, Rutishauser U (1995) J Biol Chem 270: 19357–63.

    Google Scholar 

  9. Dall'Olio F (1996) Clin Mol Pathol 49: M126–35.

    Google Scholar 

  10. Fukuda M (1996) Cancer Res 56: 2237–44.

    Google Scholar 

  11. Warren L, Buck CA, Tuszynski GP (1978) Biochim Biophys Acta 516: 97–127.

    Google Scholar 

  12. Yogeeswaran G, Salk PL (1981) Science 212: 1514–16.

    Google Scholar 

  13. Collard JG, Schijven JF, Bikker A, La Riviere G, Bolscher JGM, Roos E (1986) Cancer Res 46: 3521–27.

    Google Scholar 

  14. Schauer R, Kamerling JP (1997) Chemistry, Biochemistry and Biology of Sialic acids. In New Comprehensive Biochemistry (Montreuil J, Vliegenthart JFG and Schachter H, eds) Vol 29b. Amsterdam, Elsevier (in press).

    Google Scholar 

  15. Foxall C, Watson SR, Dowbenko D, Fennie C, Lasky LA, Kiso M, Hasegawa A, Asa D, Brandley BK (1992) J Cell Biol 117: 895–902.

    Google Scholar 

  16. Lasky LA (1995) Ann Rev Biochem 64: 113–39.

    Google Scholar 

  17. Varki A (1994) Proc Natl Acad Sci USA 91: 7390–97.

    Google Scholar 

  18. Takada A, Ohmori K, Yoneda T, Tsuyuoka K, Hasegawa A, Kiso M, Kannagi R (1993) Cancer Res 53: 354–61.

    Google Scholar 

  19. Fukushima K, Hirota M, Terasaki PI, Wakisaka A, Togashi H, Chia D, Suyama N, Fukushi Y, Nudelman E, Hakomori SI (1984) Cancer Res 44: 5279–85.

    Google Scholar 

  20. Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H, Ginsburg V (1982) J Biol Chem 257: 14365–69.

    Google Scholar 

  21. Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL (1991) J Biol Chem 266: 14869–72.

    Google Scholar 

  22. Takada A, Ohmori K, Takahashi N, Tsuyuoka K, Yago A, Zenita K, Hasegawa A, Kannagi R (1991) Biochem Biophys Res Commun 179: 713–9.

    Google Scholar 

  23. Nicolson GL (1989) Curr Opin Cell Biol 1: 1009–19.

    Google Scholar 

  24. Harduin-Lepers A, Recchi MA, Delannoy P (1995) Glycobiology 5: 741–758.

    Google Scholar 

  25. Tsuji S (1996) J Biochem 120: 1–23.

    Google Scholar 

  26. Grundmann U, Nerlich C, Rein T, Zettlmeissl G (1990) Nucleic Acids Res 18: 667.

    Google Scholar 

  27. Kitagawa H, Paulson JC (1994) J Biol Chem 269: 17872–8.

    Google Scholar 

  28. Kitagawa H, Paulson JC (1993) Biochem Biophys Res Commun 194: 375–82.

    Google Scholar 

  29. Kitagawa H, Paulson JC (1994) J Biol Chem 269: 1394–401.

    Google Scholar 

  30. Sasaki K, Watanabe E, Kawashima K, Sekine S, Dohi T, Oshima M, Hanai N, Nishi T, Hasegawa M (1993) J Biol Chem 268: 22782–87.

    Google Scholar 

  31. Sasaki K, Kurata K, Kojima N, Kurosawa N, Ohta S, Hanai N, Tsuji S, Nishi T (1994) J Biol Chem 269: 15950–56.

    Google Scholar 

  32. Nara K, Watanabe Y, Maruyama K, Kasahara K, Nagai Y, Sinai Y (1994) Proc Natl Acad Sci USA 91: 7952–56.

    Google Scholar 

  33. Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H, Furukawa K (1994) Proc Natl Acad Sci USA 91: 10455–59.

    Google Scholar 

  34. Nakayama J, Fukuda MN, Hirabayashi Y, Kanamori A, Sasaki K, Nishi T, Fukuda M (1996) J Biol Chem 271: 3684–91.

    Google Scholar 

  35. Nakayama J, Fukuda MN, Fredette B, Ranscht B, Fukuda M (1995) Proc Natl Acad Sci USA 92: 7031–35

    Google Scholar 

  36. Tsuji S, Datta AK, Paulson JC (1996) Glycobiology 6: V–VII.

    Google Scholar 

  37. Gillespie W, Paulson JC, Kelm S, Pang M, Baum LG (1993) J Biol Chem 268: 3801–4.

    Google Scholar 

  38. Dall'Olio F, Malagolini N, di Stefano G, Minni F, Marrano D, Serapni-Cessi F (1989) Int J Cancer 44: 434–39.

    Google Scholar 

  39. Sata T, Roth J, Zuber C, Stamm B, Heitz PU (1991) Am J Pathol 139: 1435–48.

    Google Scholar 

  40. Le Marer N, Laudet V, Svensson EC, Cazlaris H, Van Hille B, Lagrou C, Stéhelin D, Montreuil J, Verbert A, Delannoy P (1992) Glycobiology 2: 49–56.

    Google Scholar 

  41. Le Marer N, Stéhelin D (1995) Glycobiology 5: 219–26

    Google Scholar 

  42. Kjeldsen T, Clausen H, Hirohashi S, Ogawa T, Iijima H, Hakomori SI (1988) Cancer Res 48: 2214–20.

    Google Scholar 

  43. Brockhausen I, Yang JM, Burchell J, Whitehouse C, Taylor-Papadimitriou J (1995) Eur J Biochem 233: 607–17.

    Google Scholar 

  44. Hanisch FG, Stadie TR, Deutzmann F, Peter-Katalinic J (1996) Eur J Biochem 236: 318–27.

    Google Scholar 

  45. Chang ML, Eddy RL, Shows TB, Lau JTY (1995) Glycobiology 5:319–25.

    Google Scholar 

  46. Gaffney EV, Pigott DA, Grimaldi MA (1979) J Natl Cancer Inst 63: 913–18.

    Google Scholar 

  47. Bracke ME, Van Larebeke NA, Vyncke BM, Mareel MM (1991) Br J Cancer 63: 867–72.

    Google Scholar 

  48. Soule HD, Vazquez J, Long A, Albert S, Brennan M (1973) J Natl Cancer Inst 51: 1409–16.

    Google Scholar 

  49. Cailleau R, Young R, Olivé M, Reeves WJ (1974) J Natl Cancer Inst 53: 661–74.

    Google Scholar 

  50. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual: Cold Spring Harbor, New York, Cold Spring Harbor Laboratory.

    Google Scholar 

  51. Livingston BD, Paulson JC (1993) J Biol Chem 268: 11504–7.

    Google Scholar 

  52. Drickamer K (1993) Glycobiology 3: 2–3.

    Google Scholar 

  53. Datta AK, Paulson JC (1995) J Biol Chem 270: 1497–500.

    Google Scholar 

  54. Svensson EC, Conley PB, Paulson JC (1992) J Biol Chem 267: 3466–72.

    Google Scholar 

  55. Bracke ME, Vyncke BM, Bruyneel EA, Vermeulen SJ, De Bruyne GK, Van Larebeke NA, Vleminckx K, Van Roy FM, Mareel MM (1993) Br J Cancer 68: 282–89.

    Google Scholar 

  56. Schumacher U, Mukhtar D, Stehling P, Reutter W (1996) Histochem Cell Biol 106: 599–604.

    Google Scholar 

  57. Devine PL, Clark BA, Birrell GW, Layton GT, Ward BG, Alewood PF, McKenzie IF (1991) Cancer Res 51: 5826–36.

    Google Scholar 

  58. Lloyd KO, Burchell J, Kudryashov V, Yin BWT, Taylor-Papadimitriou J (1996) J Biol Chem 271: 33325–34.

    Google Scholar 

  59. Lee YC, Kojima N, Wada E, Kurosawa N, Nakaoka T, Hamamoto T, Tsuji S (1994) J Biol Chem 269: 10028–33.

    Google Scholar 

  60. Kim YJ, Kim KS, Kim SH, Kim CH, Ko JH, Choe IS, Tsuji S, Lee YC (1996) Biochem Biophys Res Commun 228: 324–27.

    Google Scholar 

  61. Giordanengo V, Bannwarth S, Laffont C, Van Miegem V, Harduin-Lepers A, Delannoy P, Lefebvre JC (1997) Eur J Biochem (in press).

  62. Nakagoe T, Fukushima K, Hirota M, Kusano H, Kawahara K, Ayabe H, Tomita M, Kamihira S (1991) Jpn J Cancer Res 82: 559–68.

    Google Scholar 

  63. Yamashiro S, Okada M, Haraguchi M, Furukawa K, Lloyd KO, Shiku H, Furukawa K (1995) Glycoconj J 12: 894–900.

    Google Scholar 

  64. Carubia JM, Yu RK, Macala LJ, Kirkwood JM, Varga JM (1984) Biochem Biophys Res Commun 120: 500–4.

    Google Scholar 

  65. Martersteck CM, Kedersha NL, Drapp DA, Tsui TG, Colley KJ (1996) Glycobiology 6: 289–301.

    Google Scholar 

  66. Cho SH, Sahin A, Hortobagyi GN, Hittelman WN, Dhingra K (1994) Cancer Res 54: 6302–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recchi, MA., Harduin-Lepers, A., Boilly-Marer, Y. et al. Multiplex RT-PCR method for the analysis of the expression of human sialyltransferases: application to breast cancer cells. Glycoconj J 15, 19–27 (1998). https://doi.org/10.1023/A:1006983214918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006983214918

Navigation