Skip to main content
Log in

Molecular Mechanisms of Apoptosis in Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

One of the most compelling issues to impact on contemporary cardiology to date is undoubtedly the concept of apoptosis or programmed cell death. Apoptosis, while crucial for normal embryonic development has been implicated in the pathogenesis of a number of cardiac pathologies including ischemia, oxidative stress injury, infarction and more recently heart failure. The loss of functional cardiac myocytes through activation of an apoptotic program may ultimately contribute to ventricular remodeling and the demise of ventricular function incompatible with the body's needs. The molecular mechanisms that underlie cardiac cell apoptosis remain poorly defined, however, there is increasing awareness that external as well as internal factors such tumor suppressor protein p53, cytokines including TNFα and mitochondria are potential triggers of cardiac apoptosis. Therefore, a better understanding of the role played by these factors would facilitate the advent of therapeutic agents to modulate inappropriate cardiac cell loss as a means to preserve cardiac function and prevent heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singal PK, Kirshenbaum LA. A relative deficit in antioxidant reserve may contribute in cardiac failure. Can J Cardiol 1990;6:47–49.

    Google Scholar 

  2. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure [see Comments]. N Engl J Med 1996;335:1182–1189.

    Google Scholar 

  3. Sabbah HN, Sharov VG, Goldstein S. Programmed cell death in the progression of heart failure [In Process Citation]. Ann Med 1998;30(Suppl 1):33–38.

    Google Scholar 

  4. Sabbah HN, Sharov VG, Goldstein S. Programmed cell death in the progression of heart failure. Ann Med 1998;30(Suppl 1):33–38.

    Google Scholar 

  5. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313–H2319.

    Google Scholar 

  6. Wyllie AH. The genetic regulation of apoptosis. Curr Opin Genet Dev 1995;5:97–104.

    Google Scholar 

  7. Arends MJ, Wyllie AH. Apoptosis: Mechanisms and roles in pathology. Int Rev Exp Pathol 1991;32:223–254.

    Google Scholar 

  8. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: An overview. Cancer Metastasis Rev 1992;11:95–103.

    Google Scholar 

  9. Haber DA. Telomeres, cancer, and immortality. N Engl J Med 1995;332:955–956.

    Google Scholar 

  10. Perry G. Nunomura A. Apoptosis and Alzheimer's disease [Letter]. Science 1998;282:1268–1269.

    Google Scholar 

  11. Innis RB, Seibyl JP, Scanley BE, Laruelle M, Abi Dargham A, Wallace E, Baldwin RM, Zea Ponce Y, Zoghbi S, Wang S, et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA 1993;90: 11965–11969.

    Google Scholar 

  12. Michel PP, Vyas S, Anglade P, Ruberg M, Agid Y. Morphological and molecular characterization of the response of differentiated PC 12 cells to calcium stress. Eur J Neurosci 1994;6:577–586.

    Google Scholar 

  13. Hackman AS, Singaraja R, Wellington CL, Metzler M, McCutheon K, Zhang T, Kalchman M, Hayden MR. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol 1998;141:1097–1105.

    Google Scholar 

  14. Kirshenbaum LA, de Moissac D. The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation 1997;96:1580–1585.

    Google Scholar 

  15. Kajstura J, Cheng W, Reiss K, Clark WAR, Sonnenblick EH, Krajewski S, Reed JC, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107.

    Google Scholar 

  16. Anversa P. Myocyte apoptosis and heart failure [Editorial]. Eur Heart J 1998;19:359–360.

    Google Scholar 

  17. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.

    Google Scholar 

  18. Wyllie AH: Death from inside out: An overview. Philos Trans R Soc Lond B Biol Sci 1994;345:237–241.

    Google Scholar 

  19. Dive C, Gregory CD, Phipps DJ, Evans DL, Milner AE, Wyllie AH. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim Biophys Acta 1992;1133:275–285.

    Google Scholar 

  20. Wyllie AH, Arends MJ, Morris RG, Walker SW, Evan G. The apoptosis endonuclease and its regulation. Semin Immunol 1992;4:389–397.

    Google Scholar 

  21. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995;91:2703–2711.

    Google Scholar 

  22. Cho A, Courtman DW, Langille BL. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res 1995;76:168–175.

    Google Scholar 

  23. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996;79:949–956.

    Google Scholar 

  24. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997;100:1363–1372.

    Google Scholar 

  25. Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O'Neill L, Cirielli C, Lakatta EG, Crow MT. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997;99:2635–2643.

    Google Scholar 

  26. Sabbah HN, Sharov VG, Goldstein S. Programmed cell death in the progression of heart failure [In Process Citation]. Ann Med 1998;30(Suppl 1):33–38.

    Google Scholar 

  27. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation 1997;95:320–323.

    Google Scholar 

  28. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes [see Comments]. Nature 1993;362:847–849.

    Google Scholar 

  29. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957–967.

    Google Scholar 

  30. Symonds H, Krall L, Remington L, Saenz Robles M, Lowe S, Jacks T, Van Dyke T. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994;78:703–711.

    Google Scholar 

  31. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.

    Google Scholar 

  32. Lane DP, Lu X, Hupp T, Hall PA. The role of the p53 protein in the apoptotic response. Philos Trans R Soc Lond B Biol Sci 1994;345:277–280.

    Google Scholar 

  33. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 1996;148:141–149.

    Google Scholar 

  34. Feuerstein G, Yue TL, Ma X, Ruffolo RR. Novel mechanisms in the treatment of heart failure: inhibition of oxygen radicals and apoptosis by carvedilol. Prog Cardiovasc Dis 1998;41:17–24.

    Google Scholar 

  35. Kirshenbaum LA, Singal PK. Changes in antioxidant enzymes in isolated cardiac myocytes subjected to hypoxia-reoxygenation. Lab Invest 1992;67:796–803.

    Google Scholar 

  36. Kirshenbaum LA, Thomas TP, Randhawa AK, Singal PK. Time-course of cardiac myocyte injury due to oxidative stress. Mol Cell Biochem 1992;111:25–31.

    Google Scholar 

  37. Kirshenbaum LA, Singal PK. Increase in endogenous antioxidant enzymes protects hearts against reperfusion injury. Am J Physiol 1993;265:H484–H493.

    Google Scholar 

  38. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med 1998;339:900–905.

    Google Scholar 

  39. Turner NA, Xia F, Azhar G, Zhang X, Liu L, Wei JY. Oxidative stressinduces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 1998;30:1789–1801.

    Google Scholar 

  40. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994;75: 426–433.

    Google Scholar 

  41. Black SC, Huang JQ, Rezaiefar P, Radinovic S, Eberhart A, Nicholson DW, Rodger IW. Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat [In Process Citation]. J Mol Cell Cardiol 1998;30:733–742.

    Google Scholar 

  42. Pan G, O'Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf–1 form a ternary complex. J Biol Chem 1998;273:5841–5845.

    Google Scholar 

  43. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 1998;95:4386–4391.

    Google Scholar 

  44. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998;281:1312–1316.

    Google Scholar 

  45. Nicholson DW, Thornberry NA. Caspases: Killer proteases. Trends Biochem Sci 1997;22:299–306.

    Google Scholar 

  46. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998;17:37–49.

    Google Scholar 

  47. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993;75:241–251.

    Google Scholar 

  48. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.

    Google Scholar 

  49. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, et al. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 1999;144:281–292.

    Google Scholar 

  50. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD–specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998;17:37–49.

    Google Scholar 

  51. Macdonald G, Shi L, Velde CV, Lieberman J, Greenberg AH. Mitochondria-dependent and-independent regulation of granzyme B-induced apoptosis [In Process Citation]. J Exp Med 1999;189:131–144.

    Google Scholar 

  52. Pan G, O'Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998;273: 5841–5845.

    Google Scholar 

  53. Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL. Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 1995;96:1042–1052.

    Google Scholar 

  54. Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R, Yakirevich V. Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol 1996;28:247–252.

    Google Scholar 

  55. Herskowitz A, Choi S, Ansari AA, Wesselingh S. Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol 1995;146:419–428.

    Google Scholar 

  56. Horton JW. Cellular basis for burn-mediated cardiac dysfunction in adult rabbits. Am J Physiol 1996;271: H2615–H2621.

    Google Scholar 

  57. Neumann FJ, Ott I, Gawaz M, Richardt G, Holzapfel H, Jochum M, Schomig A. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation 1995;92:748–755.

    Google Scholar 

  58. Latini R, Bianchi M, Correale E, Dinarello CA, Fantuzzi G, Fresco C, Maggioni AP, Mengozzi M, Romano S, Shapiro L. Cytokines in acute myocardial infarction: Selective increase in circulating tumor necrosis factor, its soluble receptor, and interleukin-1 receptor antagonist. J Cardiovasc Pharmacol 1994;23:1–6.

    Google Scholar 

  59. Hattler BG, Zeevi A, Oddis CV, Finkel MS. Cytokine induction during cardiac surgery: Analysis of TNF-alpha expression pre–and postcardiopulmonary bypass. J Card Surg 1995;10:418–422.

    Google Scholar 

  60. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–241.

    Google Scholar 

  61. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the Studies of Left Ventricular Dysfunction (SOLVD).J Am Coll Cardiol 1996;27:1201–1206.

    Google Scholar 

  62. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol 1998;274:R577–R595.

    Google Scholar 

  63. Mann DL. The effect of tumor necrosis factor-alpha on cardiac structure and function: A tale of two cytokines. J Card Fail 1996;2:S165–S172.

    Google Scholar 

  64. Cox G, Oberley LW, Hunninghake GW. Manganese superoxide dismutase and heat shock protein 70 are not necessary for suppression of apoptosis in human peripheral blood neutrophils. Am J Respir Cell Mol Biol 1994;10:493–498.

    Google Scholar 

  65. Mailhos C, Howard MK, Latchman DS. Heat shock proteins hsp90 and hsp70 protect neuronal cells from thermal stress but not from programmed cell death. J Neurochem 1994;63:1787–1795.

    Google Scholar 

  66. Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998;97: 1382–1391.

    Google Scholar 

  67. Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997;95:1247–1252.

    Google Scholar 

  68. Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990;85:507–514.

    Google Scholar 

  69. Mann DL, Young JB. Basic mechanisms in congestive heart failure. Recognizing the role of proinflammatory cytokines. Chest 1994;105:897–904.

    Google Scholar 

  70. Lewis M, Tartaglia LA, Lee A, Bennett GL, Rice GC, Wong GH, Chen EY, Goeddel DV. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci USA 1991;88:2830–2834.

    Google Scholar 

  71. Beg AA, Baldwin AS Jr. Activation of multiple NF-kappa B/Rel DNA-binding complexes by tumor necrosis factor. Oncogene 1994;9:1487–1492.

    Google Scholar 

  72. Lenardo MJ, Baltimore D. NF-kappa B: A pleiotropic mediator of inducible and tissue-spécific gene control. Cell 1989;58:227–229.

    Google Scholar 

  73. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci USA 1997;94:10057–10062.

    Google Scholar 

  74. Wu MX, Ao Z, Prasad KV, Wu R, Schlossman SF. IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 1998;281:998–1001.

    Google Scholar 

  75. Sarma V, Lin Z, Clark L, Rust BM, Tewari M, Noelle RJ, Dixit VM. Activation of the B-cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis. J Biol Chem 1995;270:12343–12346.

    Google Scholar 

  76. Wei YQ, Zhao X, Kariya Y, Teshigawara K, Uchida A. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunol Immunother 1995;40:73–78.

    Google Scholar 

  77. Wang CY, Mayo MW, Baldwin AS Jr. TNF-and cancer therapy–induced apoptosis: Potentiation by inhibition of NFkappaB [see Comments]. Science 1996;274:784–787.

    Google Scholar 

  78. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995;376:167–170.

    Google Scholar 

  79. de Moissac D, Mustapha S, Greenberg AH, Kirshenbaum LA. Bcl-2 activates the transcription factor NFkappaB through the degradation of the cytoplasmic inhibitor IkappaBalpha. J Biol Chem 1998;273:23946–23951.

    Google Scholar 

  80. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death [see Comments]. Science 1996;274:782–784.

    Google Scholar 

  81. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996;98:2854–2865.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurevich, R.M., Mustapha, S. & Kirshenbaum, L.A. Molecular Mechanisms of Apoptosis in Heart Failure. Heart Fail Rev 4, 1–7 (1999). https://doi.org/10.1023/A:1009824424919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009824424919

Navigation