Skip to main content
Log in

Atomistic Simulations of Integranular Fracture in Symmetric-Tilt Grain Boundaries

  • Published:
Interface Science

Abstract

Fracture experiments on symmetric-tilt grain boundaries in Cu are interpreted using the Peierls-Nabarro continuum model of dislocation nucleation as a starting point. Good agreement is found only when the continuum model is modified according to the results of atomistic simulations. The same experiments are also reproduced by direct Molecular Dynamics simulations of fracture propagation and dislocation emission from a microcrack placed in the interface plane of the symmetric-tilt (221)(221) grain boundary in fcc Cu. Direction-dependent fracture response is observed, namely the microcrack advancing by brittle fracture along the [11\(\bar 4\)] direction and being blunted by dislocation emission along the opposite [\(\bar 1\bar 1\)4] direction. Moreover, the simulations allow us to establish important differences with respect to the continuum-model predictions due to the shielding of the stress field at the crack-tip and to the presence of the residual stress at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D. Hondros and D. McLean, in Grain Boundary Structure and Properties, edited by G.A. Chadwick and D.A. Smith (Academic Press, New York, 1976), p. 353.

    Google Scholar 

  2. E.D. Hondros and M.P. Seah, in Physical Metallurgy, edited by R.W. Cahn and P. Haasen (North-Holland, Amsterdam, 1983), p. 855.

    Google Scholar 

  3. A.H. Cottrell, Mater. Sci. Tech. 5, 1165 (1989).

    Google Scholar 

  4. H.E. Exner, in Physical Metallurgy, edited by R.W. Cahn and P. Haasen (North-Holland, Amsterdam, 1983), p. 630.

    Google Scholar 

  5. T. Watanabe, Mater. Sci. Forum 126-128, 295 (1993).

    Google Scholar 

  6. J.-S. Wang and P.M. Anderson, Acta Metall. Mater. 39, 779 (1991).

    Google Scholar 

  7. A.A. Griffith, Philos. Trans. Roy. Soc. (London) A221, 163 (1920).

    Google Scholar 

  8. D. Wolf and J.A. Jaszczak, in Materials Interfaces, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 662.

    Google Scholar 

  9. J.R. Rice and R. Thomson, Phil. Mag. 29, 73 (1974).

    Google Scholar 

  10. G. Schoeck, Phil. Mag. A63, 111 (1991).

    Google Scholar 

  11. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992).

    Google Scholar 

  12. G. Xu, A.S. Argon, and M. Ortiz, Phil. Mag. A72, 415 (1995).

    Google Scholar 

  13. G. Xu, A.S. Argon, and M. Ortiz, Phil. Mag. A75, 341 (1997).

    Google Scholar 

  14. J.-S. Wang and G.E. Beltz, in FractureMechanics, 25th volume. ASTM STP 1220, edited by F. Erdogan (American Society for Testing of Materials, Philadelphia, 1995), p. 95.

    Google Scholar 

  15. F. Cleri, S.R. Phillpot, D. Wolf, and S. Yip, J. Am. Cer. Soc. 81, 501 (1998).

    Google Scholar 

  16. F. Cleri, S.R. Phillpot, and D. Wolf, in Microscopic Simulation of Interfacial Phenomena in Solids and Liquids, edited by S.R. Phillpot, P.D. Bristowe, D.G. Stroud, and J.R. Smith (Materials Research Society, Philadelphia, 1998), p. 377.

    Google Scholar 

  17. F. Cleri, S. Yip, D. Wolf, and S.R. Phillpot, Phys. Rev. Lett. 78, 2278 (1997);F. Cleri, D. Wolf, S. Yip, and S.R. Phillpot, Acta Mater. 45, 4993 (dy1997).

    Google Scholar 

  18. A.M. Cuitino and M. Ortiz, Acta Mater. 44, 427 (1996).

    Google Scholar 

  19. Y. Sun and G.E. Beltz, J. Mech. Phys. Solids 42, 1905 (1995).

    Google Scholar 

  20. Y. Sun, G.E. Beltz, and J.R. Rice, Mater. Sci. Eng. A170, 67 (1993).

    Google Scholar 

  21. D. Wolf, in Materials Interfaces, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 12.

    Google Scholar 

  22. J.R. Rice, Z. Suo, and J.-S. Wang, in Metal Ceramic Interfaces. Acta-Scripta Met. Proc. Ser., Vol. 4, edited by M. Ruhle, A.G. Evans, M.F. Ashby, and J.P. Hirth (Pergamon Press, Oxford, 1989), p. 269.

    Google Scholar 

  23. J.F. Lutsko, D. Wolf, S. Yip, S.R. Phillpot, and T. Nguyen, Phys. Rev. B38, 11572 (1988).

    Google Scholar 

  24. S.G. Larsson and A.J. Carlsson, J. Mech. Phys. Solids 21, 263 (1973); J.R. Rice, J. Mech. Phys. Solids 22, 17 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleri, F., Phillpot, S.R. & Wolf, D. Atomistic Simulations of Integranular Fracture in Symmetric-Tilt Grain Boundaries. Interface Science 7, 45–55 (1999). https://doi.org/10.1023/A:1008773913030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008773913030

Navigation