Skip to main content
Log in

The Effect of Size, Strain, and Long-Range Interactions on Ferroelectric Phase Transitions in KNbO3KTaO3KNbO3 Superlattices Studied by X-ray, EXAFS, and Dielectric Measurements

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Epitaxial, uniformly strained superlattices of ferroelectric KNbO3 and paraelectric KTaO3 are studied with respect to their structural and dielectric properties. For dielectric measurements, perfectly lattice-matched conducting KNbO3Sr(Ru0.5Sn0.5)O3 electrodes are used, and a broad, frequency-dependent maximum is observed in the capacitance-vs-temperature curves. Niobium K-edge glancing-angle EXAFS provides information regarding the crystal structure of KNbO3 films as thin as two unit cells in superlattices with equal KTaO3 and KNbO3 layer thicknesses, showing a clear difference between these thinnest-layer superlattices and films of the KNbO3K(Ta0.5Nb0.5O3 solid-solution. X-ray diffraction measurements, on the other hand, indicate that these samples exhibit the same transition temperature KNbO3Tc, indicating the importance of long-range electrostatic interactions. Analysis of the transition temperature for various structures leads to a clear identification of the effect of size and strain on KNbO3Tc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Tsai and J.M. Cowley, Appl. Phys. Lett., 65, 1906 (1994).

    Google Scholar 

  2. S.B. Ren, C.J. Lu, J.S. Liu, H.M. Shen, and Y.N. Wang, Phys. Rev., B54, R14337 (1996).

    Google Scholar 

  3. P. Ayyub, V.R. Palkar, S. Chattopadhyay, and M. Multani, Phys Rev., B51, 6135 (1995); S. Chattopadhyay, P. Ayyub, V.R. Palkar, and M. Multani, ibid., 52, 13177 (1995).

    Google Scholar 

  4. M.H. Frey and D.A. Payne, Appl. Phys. Lett., 63, 2753 (1993).

    Google Scholar 

  5. Y. Yano, K. Iijima, Y. Daitoh, T. Terashima, and Y. Bando, J. Appl. Phys., 76, 7833 (1994).

    Google Scholar 

  6. H. Tabata and T. Kawai, Appl. Phys. Lett., 70, 321 (1997).

    Google Scholar 

  7. A. Erbil, Y. Kim, and R.A. Gerhardt, Phys. Rev. Lett., 77, 1628 (1996).

    Google Scholar 

  8. I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, Appl. Phys. Lett., 68, 328 (1996).

    Google Scholar 

  9. H.-M. Christen, E.D. Specht, D.P. Norton, M.F. Chisholm, and L.A. Boatner, Appl. Phys. Lett., 72, 2535 (1998).

    Google Scholar 

  10. E.D. Specht, H.-M. Christen, D.P. Norton, and L.A. Boatner, Phys. Rev. Lett., 80, 4317 (1998).

    Google Scholar 

  11. I.J. Pickering, and G.N. George, Inorganic Chemistry, 34, 3142 (1995).

    Google Scholar 

  12. http://www-ssrl.slac.stanford.edu/exafspak.html

  13. J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, S.I., R.C. Albers, J. Am. Chem. Soc., 113, 5135 (1991).

    Google Scholar 

  14. S.J. Pennycook and D.E. Jesson, Phys. Rev. Lett., 64, 938 (1990).

    Google Scholar 

  15. S. Yilmaz, T. Venkatesan, and R. Gerhard-Mulhaupt, Appl. Phys. Lett., 58, 2479 (1991).

    Google Scholar 

  16. H.-M. Christen, L.A. Boatner, J.D. Budai, M.F. Chisholm, L.A. Gea, P.J. Marrero, and D.P. Norton, Appl. Phys. Lett., 68, 1488 (1996).

    Google Scholar 

  17. H.-M. Christen, D.P. Norton, L.A. Gea, and L.A. Boatner, Thin Solid Films, 312, 156 (1998).

    Google Scholar 

  18. H.-M. Christen, L.A. Boatner, J.D. Budai, M.F. Chisholm, L.A. Gea, D.P. Norton, Ch. Gerber, and M. Urbanik, Appl. Phys. Lett., 70, 2147 (1997).

    Google Scholar 

  19. A.W. Hewat, J. Phys. C: Solid State Phys., 6, 2559 (1973).

    Google Scholar 

  20. E. Wiener-Avnear, Appl. Phys. Lett., 65, 1784 (1994).

    Google Scholar 

  21. H. Tabata, H. Tanaka, and T. Kawai, Appl. Phys. Lett., 65, 1970 (1994).

    Google Scholar 

  22. B.D. Qu, M. Evstigneev, D.J. Johnson, and R.H. Prince, Appl. Phys. Lett., 72, 1394 (1998).

    Google Scholar 

  23. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977), pp. 94–96.

    Google Scholar 

  24. Y.G. Wang, W.L. Zhong, and P.L. Zhang, Phys. Rev., B51, 5311 (1995).

    Google Scholar 

  25. D. Schwenk, F. Fishman, and F. Schwabl, Phys. Rev., B38, 11618 (1988); J. Phys.: Condens. Matter, 2, 5409 (1990).

    Google Scholar 

  26. U.T. Hochli and L.A. Boatner, Phys Rev., B20, 266 (1979).

    Google Scholar 

  27. B.D. Qu, W.L. Zhong, and P.L. Zhang, Phys. Lett., A189, 419 (1994); Jpn. J. Appl. Phys., 34, 4114 (1995).

    Google Scholar 

  28. D. Rytz and H.J. Scheel, J. Cryst. Growth, 59, 468 (1982).

    Google Scholar 

  29. I.N. Zakharchenko, E.S. Nikitin, V.M. Mukhortov, Yu.I. Golovko, M.G. Radchenko, and V.P. Dukdevich, Phys. Stat. sol.(a), 114, 559 (1989).

    Google Scholar 

  30. S. Hoon Oh and Hyun M. Jang, Appl. Phys. Lett., 72, 1457 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christen, HM., Harshavardhan, K., Chisholm, M. et al. The Effect of Size, Strain, and Long-Range Interactions on Ferroelectric Phase Transitions in KNbO3KTaO3KNbO3 Superlattices Studied by X-ray, EXAFS, and Dielectric Measurements. Journal of Electroceramics 4, 279–287 (2000). https://doi.org/10.1023/A:1009994004989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009994004989

Navigation