Skip to main content
Log in

Relationship between the morphology of PMMA particles and properties of acrylic bone cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone cements are mainly based on acrylie polymers, poly (methyl methacrylate) (PMMA) being the most representative. The curing process (cold curing) is the result of the free radical polymerization of a mixture of beads of PMMA and methyl methacrylate (MMA), initiated by benzoyl peroxide (BPO) and activated by the presence of a tertiary amine, the most classical being N,N-dimethyl-4-toluidine (DMT). In this work the results on the effect of the size and size distribution of PMMA beads and the concentration of DMT and BPO on the setting parameters, the residual monomer content and the mechanical properties (tension and compression) of the cured systems are presented. The use of relatively larger diameter PMMA beads improves the characteristic parameters of the curing process (decreasing the peak temperature and increasing the setting time), without detrimental effects on the mechanical properties of the cured cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. CHARNLEY, J. Bone Jt Surg. 42B (1964) 28.

    Google Scholar 

  2. J. CHARNLEY, J. Bone Jt Surg. 46B (1964) 518.

    Google Scholar 

  3. J. CHARNLEY, “Acrylic cement in orthopaedic surgery” (E&S Livingstone, London, 1970).

    Google Scholar 

  4. R. C. TURNER, P. E. ATKINS, M. A. ACKLEY and J. B. PARK, J. Biomed. Mater. Res. 15 (1981) 425.

    Google Scholar 

  5. G. M. BRAUER, D. J. TERMINI and G. DICKSON J. Biomed. Mater. Res. 11 (1977) 577.

    Google Scholar 

  6. S. C. BAYNE, E. P. LAUTENSCHLAGER, C. L. COMPERE and R. WILDES. J. Biomed. Mater. Res. 9 (1975) 27.

    Google Scholar 

  7. J. B. PARK and R. S. LAKES, “Biomaterials. An introduction”, 2nd Edn (Plenum Press, New York, 1992) p. 154.

    Google Scholar 

  8. B. D. RATNER, in “Comprehensive polymer science”, Vol. 7 (Pergamon Press, Oxford, 1989) p. 201.

    Google Scholar 

  9. B. PASCUAL, I. CASTELLANO, B. VAZQUEZ, I. GOÑI, M. GURRUCHAGA, M. P. GINEBRA, F. J. GIL, J. A. PLANELL, B. LEVENFELD and J. San ROMÁN. Biomaterials 17 (1996) 509.

    Google Scholar 

  10. S. S. HAAS, G. M. BRAUER and G. DICKSON, J. Bone Jt Surg. 57A (1975) 380.

    Google Scholar 

  11. S. C. BAYNE, E. P. LAUTENSCHLAGER, E. H. GREENER and E. P. MEYER, J. Biomed. Mater. Res. 11 (1977) 859.

    Google Scholar 

  12. E. P. LAUTENSCHLAGER, S. I. STUPP and J. C. KELLER, in “Functional behaviour of orthopaedic biomaterials”, Vol. II: Applications, edited by P. DUCHEYNE and G. W. HASTINGS (CRC Press, Boca Raton, FL, 1984) p. 97.

    Google Scholar 

  13. E. P. LAUTENSCHLAGER, S. I. STUPP and J. C. KELLER, in “Functional behaviour of orthopaedic biomaterials”, Vol. II: Applications, edited by P. DUCHEYNE and G. W. HASTINGS (CRC Press, Boca Raton, FL, 1984) p. 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was accepted for publication after the 1995 Conference of the European Society of Biomaterials, Oporio, Portugal, 10–13 September.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginebra, M.B., Gil, F.X., Planell, J.A. et al. Relationship between the morphology of PMMA particles and properties of acrylic bone cements. J Mater Sci: Mater Med 7, 375–379 (1996). https://doi.org/10.1007/BF00154553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154553

Keywords

Navigation