Skip to main content
Log in

Neo-Pentoxide Precursor Synthesis, Solution Preparation, and Electronic Properties of (Ba,Sr)TiO3 Thin Films Derived from a Solution Route

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have recently isolated the neo-pentoxide (HOCH2CMe3, ONp) derivatives of Ba, Sr, and Ti as Ba4(ONp)8(HONp)6(py)2, Sr5(O)(ONp)8(Solv)5 (Solv = solvent), and Ti2(ONp)8, respectively. The combination of these precursors were found to be readily soluble in a wide range of solvents and thus were excellent candidates for preparation of barium strontium titanate ((Ba,Sr)TiO3 or BST) thin films using spin-cast deposition techniques. The highest quality BST films for this system were generated from ternary mixtures dissolved in either pyridine or pyridine/toluene. By in situ VT-GIXRD analysis it was determined that the perovskite phase of BST was readily formed at 650°C. The electronic properties of films crystallized at 700°C indicated that the thin films (300 nm) possessed a dielectric constant of 120 (tan δ = 0.03) with a tunability of 29% at ±10 V. 300 nm films (700°C) which had been generated from a standard BST solution modified with a novel tridentate ligand, had a higher dielectric constant of 180 and a tunability of 35% at ±10 V. The collective characteristics of these precursors offer an attractive alternative to the more complex, less stable sol-gel precursors currently in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Boyle, D.M. Pedrotty, C.J. Tafoya, and J.W. Ziller, Abstracts of Papers of the Am. Chem. Soc. 215(pt.1), 521-INOR (1998).

    Google Scholar 

  2. B. Jaffe, W.R.J. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).

    Google Scholar 

  3. D.C. Collier, Proc. 8th IEEE Int. Symp. Appl. Ferroelectrics 1992, 92CH3080–9, p. 199.

  4. K. Arita, E. Fugii, Y. Shimada, Y. Uemoto, T. Nasu, A. Inoue, A. Matsuda, T. Otsuki, and N. Suzuoka, Jpn. J. Appl. Phys. 33, 5397 (1994).

    Google Scholar 

  5. V. Chivukula, J. Ilowski, I. Emesh, D. McDonald, and P. Leung, Int. Ferroelectrics, 10, 247 (1995).

    Google Scholar 

  6. W.Y. Hsu, J.D. Luttmer, R. Tsu, S. Summerfelt, M. Bedekar, T. Tokumoto, and J. Nulman, Appl. Phys. Lett. 66, 2975 (1995).

    Google Scholar 

  7. T. Kawahara, M. Yamamuka, A. Yuuki, and K. Ono, Jpn. J. Appl. Phys. 34, 5077 (1995).

    Google Scholar 

  8. V.K. Varadan, D.K. Ghodgaonkar, V.V. Varadan, J.F. Kelly, and P. Gilkerdas, Microwave J. 35, 116 (1992).

    Google Scholar 

  9. R.W. Babbit, T.E. Koscica, and W.C. Drach, Microwave J. 35, 63 (1992).

    Google Scholar 

  10. H.N. Al-Shareef, D. Dimos, M.W. Raymond, R.W. Schwartz, and C.H. Mueller, J. Electroceramics 1(#2), 145 (1997).

    Google Scholar 

  11. M.H. Frey and D.A. Payne, Chem. Mater. 7, 123 (1995).

    Google Scholar 

  12. J.L. Rehspringer, P. Poix, and J.C. Bernier, J. Non-Cryst. Solids 82, 286 (1988).

    Google Scholar 

  13. K.W. Kirby, Mater. Res. Bull. 23, 881 (1988).

    Google Scholar 

  14. S.S. Flaschen, J. Am. Chem. Soc. 77, 6194 (1955).

    Google Scholar 

  15. K.S. Mazdiyasni, R.T. Dollof, and J.S. Smith II, J. Am. Ceram. Soc. 52, 523 (1969).

    Google Scholar 

  16. A. Mosset, I. Gautier-Luneau, J. Galy, P. Strehlow, and H. Schmidt, J. Non-Cryst. Solids 100, 339 (1988).

    Article  Google Scholar 

  17. T.J. Boyle, T.M. Alam, E.R. Mechenbeir, B. Scott, and J.W. Ziller, Inorg. Chem. 36, 3293 (1997).

    PubMed  Google Scholar 

  18. D.D. Perrin and W.L.F. Armarego, Purification of Laboratory Chemicals, 3rd edition, (Pergamon Press, New York, 1988).

    Google Scholar 

  19. H. Staeglich and E. Weiss, Chem. Ber. 111, 901 (1978).

    Google Scholar 

  20. S. Kumar, G.L. Messing, and W.B. White, J. Am. Ceram. Soc. 76, 617 (1993).

    Google Scholar 

  21. T.J. Boyle, D.B. Dimos, and G.J. Moore, J. Am. Ceram. Soc. Symp. Proc. 44, 361 (1995).

    Google Scholar 

  22. T.J. Boyle, C.D. Buchheit, M.A. Rodriguez, H.N. Al-Shareef, B.A. Hernandez, B. Scott, and J.W. Ziller, J. Mater. Res. 11, 2274 (1996).

    Google Scholar 

  23. T.J. Boyle and H.N. Al-Shareef, J. Mater. Sci. 32, 2263 (1997).

    Google Scholar 

  24. T.J. Boyle, T.A. Alam, D. Dimos, G.J. Moore, C.D. Buchheit, H.N. Al-Shareef, E.R. Mechenbier, and B.R. Bear, Chem. Mater. 9, 3187 (1997).

    Google Scholar 

  25. T.J. Boyle, H.N. Al-Shareef, C.D. Buchheit, R.T. Cygan, D. Dimos, M.A. Rodriguez, B. Scott, and W., Z. J. Integrated Ferroelectrics 18, 213 (1997).

    Google Scholar 

  26. T.J. Boyle, R.W. Schwartz, R.J. Doedens, and J.W. Ziller, Inorg. Chem. 34, 1110 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, T.J., Clem, P.G., Rodriguez, M.A. et al. Neo-Pentoxide Precursor Synthesis, Solution Preparation, and Electronic Properties of (Ba,Sr)TiO3 Thin Films Derived from a Solution Route. Journal of Sol-Gel Science and Technology 16, 47–55 (1999). https://doi.org/10.1023/A:1008730801392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008730801392

Navigation