Skip to main content
Log in

Characterization of the Sol-Gel Process Using Raman Spectroscopy Organically Modified Silica Gels Prepared Via the Formic Acid-Alkoxide Route

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

For precursor mixtures containing tetraethoxysilane (TEOS) and phenyltriethoxysilane (PhTREOS), time of gelation can be reduced by up to two orders of magnitude depending on reaction conditions employed when reacting the silicon alkoxide mixture with formic acid instead of water. Results indicate that time of gelation depends on the amount of PhTREOS in the precursor mixture. Within the range of concentrations investigated, an exponential law describes best the dependence of reduced time of gelation on the molar fraction of PhTREOS. Therefore, we conclude that the phenyl ring acts as a steric hindrance to network formation. Raman spectroscopy is used to characterize the reaction between the alkoxide mixture and formic acid. During the acidolysis reaction, ethanol is formed as an intermediate. A preliminary reaction scheme is proposed to account for the time dependence of species involved. Furthermore, Raman spectroscopy is successfully employed to monitor the effects of post-gelation thermal treatment of the gel samples. The effects observed are interpreted with a model of a phenyl ring trapped in a siloxane cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  2. L.L. Hench and J.K. West, Chemical Processing of Advanced Materials (Wiley, New York, 1992).

    Google Scholar 

  3. Y. Abe, T. Namiki, K. Tuchida, Y. Nagao, and T. Misono, J. Non-Cryst. Solids 147&148, 47 (1992).

    Google Scholar 

  4. H.R. Allcock, Adv. Mater. 6, 106 (1994).

    Google Scholar 

  5. J.-C. Panitz, Ph.D. Thesis, Universität Bayreuth, 1994.

  6. K.G. Sharp, Patent WO 9323333, 25.11.1993.

  7. L.N. Zorya, V.A. Onaiko, G.P. Panasyuk, and V.B. Lazarev, Zh. Neorg. Khim. 34, 1953 (1989).

    Google Scholar 

  8. K. Saita and K. Saegusa, Patent EP 273089, 06.07.1988

  9. I. Artaki, M. Bradley, T.W. Zerda, and J. Jonas, J. Phys.Chem. 89, 4399 (1985).

    Google Scholar 

  10. C.A.M. Mulder and A.A.J.M. Damen, J. Non-Cryst. Solids 93, 169 (1987).

    Google Scholar 

  11. M.C. Matos, L.M. Ilharco, and R.M. Almeida, J. Non-Cryst. Solids 147&148, 232 (1992).

    Google Scholar 

  12. T.M. Che, J.J. Rafalko, and P.B. Dorain, Raman and FT-IR Spectroscopy of Rapid Sol-Gel Processes, Ch. 64 in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 827.

    Google Scholar 

  13. D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem. 88, 5956 (1984).

    Google Scholar 

  14. R. Reisfeld and C.K. Jorgensen, Structure and Bonding (Springer, Berlin, 1992), Vol. 77, p. 207.

    Google Scholar 

  15. J.M. McKiernan, S.Y. Yamanaka, E. Knobbe, J.-C. Pouxviel, S. Parvaneh, B. Dunn, and J.I. Zink, J. Inorg. Organomet. Polym. 1, 87 (1991).

    Google Scholar 

  16. C. Rottman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M.L. Kagan, and D. Avnir, Mater. Lett. 13, 293 (1992).

    Article  Google Scholar 

  17. U. Narang, R. Wang, P.N. Prasad, and F.V. Bright, J. Phys. Chem. 98, 17 (1994).

    Google Scholar 

  18. T. Fujii and K. Toriumi, J. Chem. Soc. Faraday Trans. 89, 3437 (1993).

    Article  Google Scholar 

  19. J. McKiernan, E. Simoni, B. Dunn, and J.I. Zink, J. Phys. Chem. 98, 1006 (1994).

    Google Scholar 

  20. S. Reul, W. Richter, and D. Haarer, J. Non-Cryst. Solids 145, 149 (1992).

    Google Scholar 

  21. J.-C. Panitz, F. Zimmermann, W. Häfner, F. Fischer, and A. Wokaun, Appl. Spectrosc. 48, 454 (1994).

    Google Scholar 

  22. H. Kriegsmann, K. Licht, and Z. Elektrochem. Ber. Bunsenges. Physik. Chem. 62, 1163 (1962).

    Google Scholar 

  23. J.J.P. Stewart, J. Comput, Chem. 10, 209, 221 (1989). J.J.P. Stewart, J. Comp. Aid. Mol. Design 4, 1 (1990).

    Google Scholar 

  24. T. Clark, VAMP4.4, Universität Erlangen, 1992.

  25. J.-C. Panitz, T. Lipert, and A. Wokaun, J. Phys. Chem. 98, 8817 (1994).

    Google Scholar 

  26. F. Devreux, J.P. Boilot, F. Chaput, and A. Leconte, in Better Ceramics Through Chemistry, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, Pittsburgh, 1990), Vol. IV, p. 211.

    Google Scholar 

  27. M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London, 1994), p. 11.

    Google Scholar 

  28. B. Schrader, Raman/Infrared Atlas of Organic Compounds, 2nd edition, (Verlag Chemie, Weinheim, 1989).

    Google Scholar 

  29. F.R. Dollish, W.G. Fateley, and F.F. Bentley, Characteristic Raman Frequencies of Organic Compounds (Wiley, New York, 1974).

    Google Scholar 

  30. W. Müller-Warmuth, K.-H. Duprée, and M. Prager, Z. Naturforschung A 39, 66 (1984).

    Google Scholar 

  31. Xmol, Version 1.3.1, Minnesota Supercomputer Center, Inc., Minneapolis, MN, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panitz, JC., Wokaun, A. Characterization of the Sol-Gel Process Using Raman Spectroscopy Organically Modified Silica Gels Prepared Via the Formic Acid-Alkoxide Route. Journal of Sol-Gel Science and Technology 9, 251–263 (1997). https://doi.org/10.1023/A:1018355210753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018355210753

Navigation