Skip to main content
Log in

Antibody-mediated CNS demyelination: focal spinal cord lesions induced by implantation of an IgM anti-galactocerebroside-secreting hybridoma

  • Published:
Journal of Neurocytology

Abstract

O1 hybridoma cells, which secrete an IgM antigalactocerebroside, were implanted into the spinal cord of cyclosporine-treated juvenile or adult rats, and the animals were sacrificed ∼2–3 wk later. About half the recipient animals developed myelin lesions. In some, sharply circumscribed foci of demyelination formed within the dorsal columns. Cellular reaction consisted of macrophages containing refractile globules in the parenchyma and within enlarged perivascular spaces as well as thickened endothelial cells. “Shadow plaques” also developed, i.e. regions in which axons were surrounded by thin myelin sheaths, compatible with remyelination. In addition, we found damaged axons, some of which were swollen with organelles, comparable to the enlarged axon profiles seen at sites of constriction or interruption. Compromise of the blood-brain barrier at sites of hybridoma growth was demonstrated by extravasation of Evans blue dye. Discontinuation of cyclosporine was followed by an anti-hybridoma, complement-fixing antibody response within 2–3 d. This model of focal CNS demyelination and remyelination, with evidence of some axon damage, is mediated by a defined IgM antiglycolipid monoclonal antibody secreted within the spinal cord parenchyma. The lesions, which are similar to those of multiple sclerosis, probably result from the interaction between the intrathecally secreted IgM antibody and complement entering from the circulation at foci of compromised blood-brain barrier plus activation of endogenous or hematogenous macrophages via their complement receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramsky, O., Lisak, R. P., Silberberg, D. H. & Pleasure, D. E. (1977) Antibodies to oligodendroglia in patients with multiple sclerosis. New Engl and Journal of Medicine 297, 1207–1211.

    Google Scholar 

  • Barnum, S. R. (1995) Complement biosynthesis in the central nervous system. Critical Reviews in Oral Biology and Medicine 6, 132–146.

    Google Scholar 

  • Bernard, C. C., Johns, T. G., Slavin, A., Ichikawa, M., Ewing, C., Liu, J. & Bettadapura, J. (1997) Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. Journal of Molecular Medicine 75, 77–88.

    Google Scholar 

  • Blakemore, W. F. (1974) Remyelination of the superior cerebellar peduncle in old mice following demyelination induced by cuprizone. Journal of the Neurological Sciences 22, 121–126.

    Google Scholar 

  • Blakemore, W. F. (1978) Observations on remyelination in the rabbit spinal cord following demyelination induced by lysolecithin. Neuropathology and Applied Neurobiology 4, 47–59.

    Google Scholar 

  • Blakemore, W. F. (1982) Ethidium bromide-induced demyelination in the spinal cord of the cat. Neuropathology and Applied Neurobiology 8, 365–375.

    Google Scholar 

  • Blakemore, W. F., Eames, R. A., Smith, K. J. & Mcdonald, W. I. (1977) Remyelination in the spinal cord of the cat following intraspinal injections of lysolecithin. Journal of the Neurological Sciences 33, 31–43.

    Google Scholar 

  • Blakemore, W. F., Olby, N. J. & Franklin, R. J. (1995) The use of transplanted glial cells to reconstruct glial environments in the CNS. Brain Pathology 5, 443–450.

    Google Scholar 

  • Bornstein, M. B. & Raine, C. S. (1976) The initial structural lesion in serum-induced demyelination in vitro. Laboratory Investigation 35, 391–401.

    Google Scholar 

  • Bostock, H. & Sears, T. S. (1978) The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. Journal of Physiology (London) 280, 273–301.

    Google Scholar 

  • Bunge, M. B. (1973) Fine structure of nerve fibers and ganglion cells of isolated sympathetic neurons in culture. Journal of Cell Biology 56, 713–735.

    Google Scholar 

  • Compston, D. A., Morgan, B. P., Campbell, A. K., Wilkins, P., Cole, G., Thomas, N. D. & Jasani, B. (1989) Immunocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathology and Applied Neurobiology 15, 307–316.

    Google Scholar 

  • Dejong, B. A. & Smith, M. E. (1997) A role for complement in phagocytosis of myelin. Neurochemistry Research 22, 491–498.

    Google Scholar 

  • Dubois-dalq, M., Niedieck, B. & Buyse, M. (1970) Action of anti-cerebroside sera on myelinated nervous tissue culture. Pathologica Europaea 5, 331–347.

    Google Scholar 

  • Dyer, C. A. & Benjamins, J. A. (1989) Organization of oligodendroglial membrane sheets. II. Galactocerebroside: antibody interactions signal changes in cytoskeleton and myelin basic protein. Journal of Neuroscience Research 24, 212–221.

    Google Scholar 

  • Fearon, D. T. & Wong, W. W. (1983) Complement ligand-receptor interactions that mediate biological responses. Annual Review of Immunology 1, 243–271.

    Google Scholar 

  • Franklin, R., Gilson, J. M. & Blakemore, W. F. (1997) Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. Journal of Neuroscience Research 50, 337–344.

    Google Scholar 

  • Frick, E. & Stickl, H. (1976) The pathogenesis of multiple sclerosis. Cytotoxic antibodies against myelin sheath tissue in multiple sclerosis. Fortschrift fur Medizin 94, 1019–1024.

    Google Scholar 

  • Friedrich Jr., V. L. & Lazzarini, R. A. (1993) Restricted migration of transplanted oligodendrocytes or their progenitors, revealed by transgenic marker M beta P. Journal of Neural Transplantation and Plasticity 4, 139–146.

    Google Scholar 

  • Hall, S. M. (1972) The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. Journal of Cell Science 10, 535–546.

    Google Scholar 

  • Hartung, H. P. & Rieckmann, P. (1997) Pathogenesis of immune-mediated demyelination in the CNS. Journal of Neural Transmission Suppl. 50, 173–181.

    Google Scholar 

  • Hille, B. (1984) Ion Channels of Excitable Membranes, p. 240. Sinauer: Sunderland.

    Google Scholar 

  • Hiremath, M. M., Saito, Y., Knapp, G. W., Ting, J. P., Suzuki, K. & Matsushima, G. K. (1998) Microglial/ macrophage accumulation during cuprizoneinduced demyelination in C57BL/6 mice. Journal of Neuroimmunology 92, 38–49.

    Google Scholar 

  • Prineas, J. W. (1985) The neuropathology of multiple sclerosis. In Handbook of Clinical Neurology.Vol. 3, Demyelinating Diseases. (edited by Koester, J. C.), pp. 213–257. New York: Elsevier.

    Google Scholar 

  • Jacobs, J. M. & Scadding, J. W. (1990) Morphological changes in IgM paraproteinaemic neuropathy. Acta Neuropathologica (Berlin) 80, 77–84.

    Google Scholar 

  • Keirstead, H. S., Hughes, H. C. & Blakemore, W. F. (1998) Aquantifiable model of axonal regeneration in the demyelinated adult rat spinal cord. Experimental Neurology 151, 303–313.

    Google Scholar 

  • Kies, M. W., Roboz, E. & Alvord Jr., E. C. (1956) Experimental allergic encephalomyelitic activity in a glycoprotein fraction of bovine spinal cord. Federation Proceedings 15, 288.

    Google Scholar 

  • Lampert, P. W. (1967) Acomparative electron microscopic study of reactive, degenerating, regenerating, and dystrophic axons. Journal of Neuropathology and Experimental Neurology 26, 345–367.

    Google Scholar 

  • Lassmann, H., Brunner, C., Bradl, M. & Linington, C. (1988) Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathologica (Berlin) 2, 566–576.

    Google Scholar 

  • Lassmann, H., Suchanek, G. & Ozawa, K. (1997) Role of complement in inflammation and injury in the nervous system. Experimental and Clinical Immunogenetics 14, 19–23.

    Google Scholar 

  • Latov, N. (1994) Antibodies to glycoconjugates in neuropathy and motor neuron disease. Progress in Brain Research 101, 295–303.

    Google Scholar 

  • Leonhardt, H. (1976) ÒAxonal spheroidsÓ in the spinal cord of normal rabbits. Cell and Tissue Research 174, 99–108.

    Google Scholar 

  • Lindsberg, P. J., Ohman, J., Lehto, T., Karjalainen-lindsberg, M. L., Paetau, A., Wuorima, T., Carpen, O., Kaste, M. & Meri, S. (1996) Complement activation in the central nervous system following blood-brain barrier damage in man. Annals of Neurology 40, 587–596.

    Google Scholar 

  • Linington, C. & Lassmann, H. (1989) Immunohistochemical localization of terminal complement complex C9 in EAE. Acta Neuropathologica (Berlin) 79, 78–85.

    Google Scholar 

  • Ludwin, S. (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Laboratory Investigation 39, 597–612.

    Google Scholar 

  • Mclaurin, J., Dõsouza, S., Stewart, J., Blain, M., Beaudet, A., Nalbantoglu, J. & Antel, J. P. (1995) Effect of tumor necrosis factor alpha and beta on human oligodendrocytes and neurons in culture. International Journal of Developmental Neuroscience 13, 369–381.

    Google Scholar 

  • Mcfarland, H. F., Stone, L. A., Calabresi, P. A., Maloni, H., Bash, C. N. & Frank, J. A. (1996) MRI studies of multiple sclerosis: implications for the natural history of the disease and for monitoring effectiveness of experimental therapies. Multiple Sclerosis 2, 198–205.

    Google Scholar 

  • Metzger, H. (1970) Structure and function of gammaM macroglobulins. Advances in Immunology 12, 57–116.

    Google Scholar 

  • Nerenberg, S. T., Prasad, R. & Rothman, M. E. (1978) Cerebral spinal fluid IgG, IgA, IgM, IgD, and IgE levels in central nervous system disorders. Neurology 28, 988–990.

    Google Scholar 

  • Ozawa, K., Saida, T., Saida, K., Nishitani, H. & Kameyama, M. (1989) In vivo CNS demyelination mediated by anti-galactocerebroside antibody. Acta Neuropathologica (Berlin) 7, 621–628.

    Google Scholar 

  • Piddlesden, S., Lassmann, H., Zimprich, F., Morgan, B. P. & Linington, C. (1993) The demyelinating potential of antibodies to myelin oligodendrocyte protein is related to their ability to fix complement. American Journal of Pathology 143, 555–564.

    Google Scholar 

  • Prineas, J. W. (1985) The neuropathology of multiple sclerosis. In Handbook of Clinical Neurology.Vol. 3, Demyelinating Diseases. (edited by Koester, J. C.), pp. 213–257. New York: Elsevier.

    Google Scholar 

  • Raine, C. S. (1985) Experimental allergic encephalomyelitis and experimental allergic neuritis. In Handbook of Clinical Neurology (edited by Vinken, P. J., Bruyn, G. W. & Klawans, H. L.), pp. 429–466. New York: Elsevier.

    Google Scholar 

  • Raine C. S. (1997) The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion. Journal of Neuroimmunology 77, 135–152.

    Google Scholar 

  • Raine, C. S. & Cross, A. H. (1989) Axonal dystrophy as a consequence of long-term demyelination. Laboratory Investigation 60, 714–725.

    Google Scholar 

  • Ranscht, B., Wood, P. L. & Bunge, R. P. (1987) Inhibition of in vitro peripheral myelin formation by monoclonal antigalactocerebroside. Journal of Neuroscience 7, 2936–2947.

    Google Scholar 

  • Robbins, D. S., Shirai, Y., Drysdale, B. E., Lieberman, A., Shin, H. S. & Shin, M. L. (1987) Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. Journal of Immunology 139, 2593–2597.

    Google Scholar 

  • Rodriguez, M., Pierce, M. L., & Thiemann, R. L. (1991) Immunoglobulins stimulate central nervous system remyelination: electron microscopic and morphometric analysis of proliferating cells. Laboratory Investigation 64, 358–370.

    Google Scholar 

  • Rosenbluth, J. (1990) Axolemmal abnormalities in myelin mutants. Annals of the New York Academy of Sciences 6905, 194–214.

    Google Scholar 

  • Rosenbluth, J., Hasegawa, M., Shirasaki, N., Rosen, C. L. & Liu, Z. (1990) Mylin formation following transplantation of normal fetal glia into myelindeficient rat spinal cord. Journal of Neurocytology 19, 718–730.

    Google Scholar 

  • Rosenbluth, J. Liang, W. L., Liu, Z., Guo, D. & Schiff, R. (1996) Expanded CNS myelin sheaths formed in situ in the presence of an antigalactocerebroside-producing hybridoma. Journal of Neuroscience 16, 2635–2641.

    Google Scholar 

  • Rosenbluth, J., Liang, W. L. & Schiff, R. (1994a) Myelin-deficient rat: role of the cerebellum in tonic seizures and tremor. Society for Neuroscience Abstracts 20, 3.

    Google Scholar 

  • Rosenbluth, J., Liu, Z,. Guo, D. & Schiff, R. (1994b) Inhibition of CNS myelin development in vivo by implantation of anti-GalC hybridoma cells. Journal of Neurocytology 23, 699–707.

    Google Scholar 

  • Rosenbluth, J., Schiff, R., Liang, W. L. & Dou, W. K. (1998) Evidence for focal demyelination induced in rat spinal cord by intraspinal anti-glycolipid antibodies plus circulation-derived complement. Society for Neuroscience Abstracts 24, 1025.

    Google Scholar 

  • Rosenbluth, J. & Schiff, R. (1999) Axon damage in MS-like lesions of rat spinal cord induced by antiglycolipid IgM antibodies. Society for Neuroscience Abstracts 25, 739.

    Google Scholar 

  • Saida, T., Saida, K. & Silberberg, D. H. (1979) Demyelination produced by exprimental allergic neuritis serum and anti-galactocerebroside antiserum in CNS cultures. An ultrastructural study. Acta Neuropathologica (Berlin) 48, 19–25.

    Google Scholar 

  • Sommer, I. & Schachner, M. (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Developmental Biology 83, 311–327.

    Google Scholar 

  • Sotelo, C. & Palay, S. L. (1968) The fine structure of the lateral vestibular nucleus in the rat.1. neurons and neuroglial cells. Journal of Cell Biology 36, 151–179.

    Google Scholar 

  • Stoll, G., Schmidt, B., Jander, S., Toyka, K. V. & Hartung, H. P. (1991) Presence of the terminal complement complex (C5b-9) precedes myelin degradation in immune-mediated demyelination of the rat peripheral nervous system. Annals of Neurology 30, 147–155.

    Google Scholar 

  • Storch, M. K., Piddlesden, S., Haltia, M., Livanainen, M., Morgan, P. & Lassmann, H. (1998) Multiple sclerosis: in situ evidence for Annals of Neurology 43, 465–476.

    Google Scholar 

  • Stys, P. K., Waxman, S. G. & Ransom, B. R. (1991) Na(+)-Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals of Neurology 30, 375–380.

    Google Scholar 

  • Suen, W. E., Bergman, C. M., Hjelmstrom, P. & Ruddle, N. H. (1997) A critical role for lymphotoxin in experimental allergic encephalomyelitis. Journal of Experimental Medicine 186, 1233–1240.

    Google Scholar 

  • Suzuki, K., Andrews, J. M., Waltz, J. M. & Terry, R. D. (1969) Ultrastructural studies of multiple sclerosis. Laboratory Investigation 20, 444–454.

    Google Scholar 

  • Trapp, B. D., Peterson, B. S., Ransohoff, R. M., Rudick, R., Mork, S. & Bo, L. (1998) Axonal transection in the lesions of multiple sclerosis. New England Journal of Medicine 338, 278–285.

    Google Scholar 

  • Waksman, B. H., Porter, H., Lees, M. D., Adams, R. D. & Folch, J. (1954) A study of the chemical nature of components of bovine white matter effective in producing allergic encephalomyelitis in the rabbit. Journal of Experimental Medicine 100, 451–471.

    Google Scholar 

  • Warren, K. G. & Catz, I. (1986) Diagnostic value of cerebrospinal fluid anti-myelin basic protein in patients with multiple sclerosis. Annals of Neurology 2, 20–25.

    Google Scholar 

  • Waxman, S. G. Black, J. A., Ransom, B. R. & Stys, P. K. (1994) Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca(2+)-mediated injury in myelinated CNS axons. Brain Research 644, 197–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenbluth, J., Schiff, R., Liang, WL. et al. Antibody-mediated CNS demyelination: focal spinal cord lesions induced by implantation of an IgM anti-galactocerebroside-secreting hybridoma. J Neurocytol 28, 397–416 (1999). https://doi.org/10.1023/A:1007021916210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007021916210

Keywords

Navigation