Skip to main content
Log in

Molecular Determinants of Pituitary Cytodifferentiation

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The pituitary is a complex gland and is composed of several cell types, each responsible for the production of specific hormones. In the past, it was thought that one cell could make only one hormone; the concept of plurihormonality was poorly understood. Plurihormonal adenomas were thought to be either composed of multiple cell types, each producing one hormone (plurimorphous adenomas) or composed of poorly differentiated cells that exhibited abnormal production of multiple hormones. However, the molecular factors that determine hormone production have now been identified as transcription factors that target specific hormone genes. These factors have clarified three main pathways of cell differentiation. ACTH- producing corticotrophs are determined by corticotropin upstream transcription-binding element (CUTE) proteins including neuroD1/beta2. Bihormonal gonadotrophs require expression of steroidgenic. factor (SF)-1. The complex family of Pit-1 expressing cells can mature into somatotrophs, mammosomatotrophs, lactotrophs or thyrotrophs with the additional expression of estrogen receptor (ER)α, which enhances PRL secretion, or thyrotroph embryonic factor (TEF) which stimulates TSH-beta production. The recognition of these molecular determinants of adenohypophysial cytodifferentiation has clarified the patterns of plurihormonality which have been recognized in pituitary adenomas and provide a framework for classification of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovacs K, Horvath E, Asa SL, Stefaneanu L, Sano T. Pituitary cells producing more than one hormone. Human pituitary adenomas. Trends Endocrinol Metab 1989;1:104–107.

    Google Scholar 

  2. Horn K, Erhardt F, Fahlbusch R, Pickardt CR, von Werder K, Scriba PC. Recurrent goiter, hyperthyroidism, galactorrhea and amenorrhea due to a thyrotropin and prolactinproducing pituitary tumor. J Clin Endocrinol Metab 1976; 43:137–143.

    Google Scholar 

  3. Sherry SH, Guay AT, Lee AK, Hedley-Whyte T, Federman M, Freidberg SR, Woolf PD. Concurrent production of adrenocorticotropin and prolactin fromtwo distinct cell lines in a single pituitary adenoma: A detailed immunohistochemical analysis. J Clin Endocrinol Metab 1982;55:947–955.

    Google Scholar 

  4. Carlson HE, Linfoot JA, Braunstein GD, Kovacs K, Young RT. Hyperthyroidism and acromegaly due to a thyrotropinand growth hormone-secreting pituitary tumor. Lack of hormonal response to bromocriptine. Am J Med 1983;74:915–923.

    Google Scholar 

  5. Corenblum B, Sirek AMT, Horvath E, Kovacs K, Ezrin C. Human mixed somatotrophic and lactotrophic pituitary adenomas. J Clin Endocrinol Metab 1976;42:857–863.

    Google Scholar 

  6. Yamaji T, Ishibashi M, Teramoto A, Fukushima T. Prolactin secretion by mixed ACTH-prolactin pituitary adenoma cells in culture. Acta Endocrinol (Copenh) 1985;108:456–463.

    Google Scholar 

  7. Duello TM, Halmi NS. Pituitary adenoma producing thyrotropin and prolactin. An immunocytochemical and electron microscopic study. Virchows Arch [Pathol Anat] 1977; 376:255–265.

    Google Scholar 

  8. Horvath E, Kovacs K, Singer W, Ezrin C, Kerenyi NA. Acidophil stem cell adenoma of the human pituitary. Arch Pathol Lab Med 1977;101:594–599.

    Google Scholar 

  9. Heitz PhU. Multihormonal pituitary adenomas. Horm Res 1979;10:1–13.

    Google Scholar 

  10. Benoit R, Pearson-Murphy BE, Robert F, Marcovitz S, Hardy J, Tsoukas G, Gardiner RJ. Hyperthyroidism due to a pituitary TSH secreting tumour with amenorrhoea-galactorrhoea. Clin Endocrinol (Oxf) 1980;12:11–19.

    Google Scholar 

  11. Koide Y, Kugai N, Kimura S, Fujita T, Kameya T, Azukizawa A, Ogata E, Tomono Y, Yamashita K. A case of pituitary adenoma with possible simultaneous secretion of thyrotropin and follicle-stimulating hormone. J Clin Endocrinol Metab 1982;54:397–403.

    Google Scholar 

  12. Kovacs K, Horvath E, Ezrin C, Weiss MH. Adenoma of the human pituitary producing growth hormone and thyrotropin. A histologic, immunocytologic and fine-structural study. Virchows Arch [Pathol Anat] 1982;395:59–68.

    Google Scholar 

  13. Horvath E, Kovacs K, Singer W, Smyth HS, Killinger DW, Ezrin C, Weiss MH. Acidophil stem cell adenoma of the human pituitary: Clinicopathologic analysis of 15 cases. Cancer 1981;47:761–771.

    Google Scholar 

  14. Horvath E, Kovacs K, Scheithauer BW, Randall RV, Laws ER, Jr., Thorner MO, Tindall GT, Barrow DL. Pituitary adenomas producing growth hormone, prolactin, and one or more glycoprotein hormones: A histologic, immunohistochemical, and ultrastructural study of four surgically removed tumors. Ultrastruct Pathol 1983;5:171–183.

    Google Scholar 

  15. Jaquet P, Hassoun J, Delori P, Gunz G, Grisoli F, Weintraub BD. A human pituitary adenoma secreting thyrotropin and prolactin: Immunohistochemical, biochemical, and cell culture studies. J Clin Endocrinol Metab 1984;59:817–824.

    Google Scholar 

  16. McComb DJ, Bayley TA, Horvath E, Kovacs K, Kourides IA. Monomorphous plurihormonal adenoma of the human pituitary. A histologic, immunocytologic and ultrastructural study. Cancer 1984;53:1538–1544.

    Google Scholar 

  17. Tourniaire J, Trouillas J, Chalendar D, Bonneton-Emptoz A, Goutelle A, Girod C. Somatotropic adenoma manifested by galactorrhea without acromegaly. J Clin Endocrinol Metab 1985;61:451–453.

    Google Scholar 

  18. Horvath E, Kovacs K, Smyth HS, Killinger DW, Scheithauer BW, Randall R, Laws ER Jr., SingerW. A novel type of pituitary adenoma: Morphological feature and clinical correlations. J Clin Endocrinol Metab 1988;66:1111–1118.

    Google Scholar 

  19. Simard M, Mirell CJ, Pekary AE, Drexler J, Kovacs K, Hershman JM. Hormonal control of thyrotropin and growth hormone secretion in a human thyrotrope pituitary adenoma studied in vitro. Acta Endocrinol (Copenh) 1988;119:283–290.

    Google Scholar 

  20. Malarkey WB, Kovacs K, O'Dorisio TM. Response of a GHand TSH-secreting pituitary adenoma to a somatostatin analogue (SMS 201-995): Evidence that GH and TSH coexist in the same cell and secretory granules. Neuroendocrinology 1989;49:267–274.

    Google Scholar 

  21. Sano T, Kovacs K, Asa SL, Smyth HS. Immunoreactive luteinizing hormone in functioning corticotroph adenomas of the pituitary. Immunohistochemical and tissue culture studies of two cases. Virchows Arch [A] 1990;417:361–367.

    Google Scholar 

  22. Kontogeorgos G, Horvath E, Kovacs K, Killinger DW, Smyth HS. Null cell adenoma of the pituitary with features of plurihormonality and plurimorphous differentiation. Arch Pathol Lab Med 1991;115:61–64.

    Google Scholar 

  23. Beckers A, Courtoy R, Stevenaert A, Boniver J, Closset J, Frankenne F, Reznik M, Hennen G.Mammosomatotropes in human pituitary adenomas as revealed by electron microscopic double gold immunostaining method. Acta Endocrinol (Copenh) 1988;118:503–512.

    Google Scholar 

  24. Osamura RY. Immunoelectron microscopic studies of GH and a subunit in GH secreting pituitary adenomas. Pathol Res Pract 1988;183:569–571.

    Google Scholar 

  25. Horvath E, Lloyd RV, Kovacs K. Propylthiouracyl-induced hypothyroidism results in reversible transdifferentiation of somatotrophs into thyroidectomy cells.Amorphologic study of the rat pituitary including immunoelectron microscopy. Lab Invest 1990;63:511–520.

    Google Scholar 

  26. Losinski NE, Horvath E, Kovacs K, Asa SL. Immunoelectron microscopic evidence of mammosomatotrophs in human adult and fetal adenohypophyses, rat adenohypophyses and human and rat pituitary adenomas. Anat Anz 1991;172: 11–16.

    Google Scholar 

  27. Frawley LS, Boockfor FR, Hoeffler JP. Identification by plaque assays of a pituitary cell type that secretes both growth hormone and prolactin. Endocrinology 1985;116: 734–737.

    Google Scholar 

  28. Lloyd RV, Anagnoston D, Cano M, Barkan AL, Chandler WF. Analysis of mammosomatotropic cells in normal and neoplastic human pituitary tissues by the reverse hemolytic plaque assay and immunocytochemistry. J Clin Endocrinol Metab 1988;66:1103–1110.

    Google Scholar 

  29. Lloyd RV. Analysis of human pituitary tumors by in situ hybridization. Pathol Res Pract 1988;183:558–560.

    Google Scholar 

  30. Lloyd RV, Cano M, Chandler WF, Barkan AL, Horvath E, Kovacs K. Human growth hormone and prolactin secreting pituitary adenomas analyzed by in situ hybridization [published erratum appears in Am J Pathol 1989; 135 (3): following Table of Contents]. Am J Pathol 1989;134:605–613.

    Google Scholar 

  31. Li J, Stefaneanu L, Kovacs K, Horvath E, Smyth HS. Growth hormone (GH) and prolactin (PRL) gene expression and immunoreactivity in GH-and PRL-producing human pituitary adenomas. Virchows Arch [A] 1993;422:193–201.

    Google Scholar 

  32. Stefaneanu L, Kovacs K, Lloyd RV, Scheithauer BW, Yound WF Jr., Sano T, Jin L. Pituitary lactotrophs and somatotrophs in pregnancy: A correlative in situ hybridization and immunocytochemical study. Virchows Arch [B] 1992;62:291–296

    Google Scholar 

  33. Asa SL, Tumors of the Pituitary Gland. Atlas of Tumor Pathology, Third Series, Washington, D.C.: Armed Forces Institute of Pathology, 1998.

    Google Scholar 

  34. Asa SL, Kovacs K. Functional morphology of the human fetal pituitary. Pathology Annual 1984;19 Pt 1:275–315.

    Google Scholar 

  35. Asa SL, Kovacs K, Laszlo FA, Domokos I, Ezrin C. Human fetal adenohypophysis. Histologic and immunocytochemical analysis. Neuroendocrinology 1986;43:308–316.

    Google Scholar 

  36. Asa SL, Kovacs K, Horvath E, Losinski NE, Laszlo FA, Domokos I, Halliday WC. Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 1988;48:423–431.

    Google Scholar 

  37. Asa SL, Kovacs K, Singer W.Human fetal adenohypophysis: Morphologic and functional analysis in vitro. Neuroendocrinology 1991;53:562–572.

    Google Scholar 

  38. Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y, Drouin J. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-epiomelanocortin gene. Genes Dev 1996;10:1284–1295.

    Google Scholar 

  39. Crawford MJ, Lanctot C, Tremblay JJ, Jenkins N, Gilbert D, Copeland N, Beatty B, Drouin J. Human and murine PTX1/ Ptx1 gene maps to the region for Treacher Collins syndrome. Mamm Genome 1997;8:841–845.

    Google Scholar 

  40. Tremblay JJ, Lanctot C, Drouin J. The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1) acts in synergy with SF-1 and Pit-1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 1998;12:428–441.

    Google Scholar 

  41. Gage PJ, Camper SA. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 1997;6:457–464.

    Google Scholar 

  42. Sheng HZ, Moriyama K., Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997;278:1809–1812.

    Google Scholar 

  43. Bach I, Rhodes SJ, Pearse RV, Heinzel T, Gloss B, Scully KM, Sawchenko PE, Rosenfeld MG. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 1995;92:2720–2724.

    Google Scholar 

  44. Hermesz E, Machem S, Mahon KA. Rpx: A novel anteriorrestricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke' pouch of the mouse embryo. Develop 1996;122:41–52.

    Google Scholar 

  45. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Glieberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996;384:327–333.

    Google Scholar 

  46. Gage PJ, Brinkmeier MLSLM, Knapp. L.T., Camper SA, Mahon KA. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol Endocrinol 1996;10:1570–1581.

    Google Scholar 

  47. Wu W, Cogan JD, Pfäffle RW, Dasen JS, Frisch H, O'Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JAI, Rosenfeld MG. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nature Genet 1998;18: 147–149.

    Google Scholar 

  48. Fofanova O, Takmura N, Kinoshita E, Parks JS, Brown MR, Peterkova VA, Evgrafov OV, Goncharov NP, Bulatov AA, Dedov II, Yamashita S. Compound heterozygous deletion of the prop-1 gene in children with combined pituitary hormone deficiency. J Clin Endocrinol Metab 1998;83:2601–2604.

    Google Scholar 

  49. Jackson SM, Barnhart KM, Mellon P, Gutierrez-Hartmann A, Hoeffler JP. Helix-loop proteins are present and differentially expressed in different cell lines from the anterior pituitary. Mol Cell Endocrinol 1993;96:167–176.

    Google Scholar 

  50. Therrien M, Drouin J. Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. MolCell Biol 1993;13:2342–2353.

    Google Scholar 

  51. Poulin G, Turgeon B, Drouin J. NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol 1997;17:6673–6682.

    Google Scholar 

  52. Ingraham HA, Chen R, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, Rosenfeld MG. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phentoype. Cell 1988;55:519–529.

    Google Scholar 

  53. Bodner M, Castrillo J-L, Theill LE, Deerinck T, Ellisman M, Karin M. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 1988;55:505–518.

    Google Scholar 

  54. Ingraham HA, Albert VR, Chen R, Crenshaw EB, III, Elsholtz HP, He X, Kapiloff MS, Mangalam HJ, Swanson LW, Treacy MN, Rosenfeld MG. A family of POU-domain and Pit-1 tissue-specific transcription factors in pituitary and neuroendocrine development. Annu Rev Physiol 1990;52: 773–791.

    Google Scholar 

  55. Rosenfeld MG. POU-domain transcription factors: POU-erful developmental regulators. Genes Dev 1991;5:897–907.

    Google Scholar 

  56. Dollé P, Castrillo J-L, Theill LE, Deerinck T, Ellisman M, Karin M. Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. Cell 1990;60:809–820.

    Google Scholar 

  57. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, Swanson LW. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interaction with other classes of transcription factors. Genes Dev 1990;4:695–711.

    Google Scholar 

  58. Crenshaw EB, III, Kalla K, Simmons DM, Swanson LW, Rosenfeld MG. Cell-specific expression of the prolactin gene in transgenic mice is controlled by synergistic interactions between promoter and enhancer elements. Genes Dev 1989; 3:959–972.

    Google Scholar 

  59. Steinfelder HJ, Radovick S, Wondisford FE. Hormonal regulation of the thyrotropin b-subunit gene by phosphorylation of the pituitary-specific transcription factor Pit-1. Proc Natl Acad Sci USA 1992;89:5942–5945.

    Google Scholar 

  60. Mason ME, Friend KE, Copper J, Shupnik MA. Pit-1/GHF-1 binds to TRH-sensitive regions of the rat thyrotropin b gene. Biochemistry 1993;32:8932–8938.

    Google Scholar 

  61. Kim MK, McClaskey JH, Bodenner DL, Weintraub BD. An AP-1-like factor and the pituitary-specific factor Pit-1 are both necessary to mediate hormonal induction of human thyrotropin b gene expression. J Biol Chem 1993;268:23366–23375.

    Google Scholar 

  62. Drolet DW, Scully KM, Simmons DM, Wegner M, Chu K, Swanson LW, Rosenfeld MG. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins. Genes Dev 1991;5:1739–1753.

    Google Scholar 

  63. Konzak KE, Moore DD. Functional isoforms of Pit-1 generated by alternative messenger RNA splicing. Mol Endocrinol 1992;6:241–247.

    Google Scholar 

  64. Theill LE, Hattori K, Lazzaro D, Castrillo J-L, Karin M. Differential splicing of the GHF-1 primary transcript gives rise to two functionally distinct homeodomain proteins. EMBO J 1992;11:2261–2269.

    Google Scholar 

  65. Morris AE, Kloss B, McChesney RE, Bancroft C, Chasin LA. An alternatively spliced Pit-1 isoform altered in its ability to trans-activate. Nuclei Acids Res 1992;20:1355–1361.

    Google Scholar 

  66. Haugen BR, Wood WM, Gordon DF, Ridgway EC. A thyrotrope-specific variant of Pit-1 transactivates the thyrotropin B promoter. J Biol Chem 1993;268:818–824.

    Google Scholar 

  67. Haugen BR, Gordon DF, Nelson AR, Wood WM, Ridgway EC. The combination of Pit-1 and Pit-1T have a synergistic stimulatory effect on the thyrotropin B-subunit promoter but not the growth hormone or prolactin promoters. Mol Endocrinol 1994;8:1574–1582.

    Google Scholar 

  68. Asa SL, Puy LA, Lew AM, Sundmark VC, Elsholtz HP. Cell type-specific expression of the pituitary transcription activator Pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1993;77:1275–1280.

    Google Scholar 

  69. Friend KE, Chiou Y-K, Laws ER, Jr., Lopes MBS, Shupnik MA. Pit-1 messenger ribonucleic acid is differentially expressed in human pituitary adenomas. J Clin Endocrinol Metab 1993;77:1281–1286.

    Google Scholar 

  70. Pellegrini I, Barlier A, Gunz G, Figarella-Branger D, Enjalbert A, Grisoli F, Jaquet P. Pit-1 gene expression in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1994;79:189–196.

    Google Scholar 

  71. Puy LA, Asa SL. The ontogeny of pit-1 expression in the human fetal pituitary gland. Neuroendocrinology 1996;63: 349–355.

    Google Scholar 

  72. Li S, Crenshaw EB, III, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1 Nature 1990;347:528–533.

    Google Scholar 

  73. Tatsumi K, Miyai K, Notomi T, Kaibe K, Amino N, Mizuno Y, Kohno H. Cretinism with combined hormone deficiency caused by a mutation in the Pit-1 gene. Nature Genet 1992; 1:56–58.

    Google Scholar 

  74. Pfäffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M, van der Nat H, van den Brande JL, Rosenfeld MG, Ingraham HA. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 1992;257:1118–1121.

    Google Scholar 

  75. Radovick S, Nations M, Du Y, Berg LA, Weintraub BD, Wondisford FE. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 1992;257:1115–1118.

    Google Scholar 

  76. Day RN, Koike S, Sakai M, Muramatsu M, Maurer RA. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol Endocrinol 1990;4:1964–1971.

    Google Scholar 

  77. Chaidarun SS, Eggo MC, Stewart PM, Barber PC, Sheppard MC. Role of growth factors and estrogen as modulators of growth, differentiation, and expression of gonadotropin subunit genes in primary cultured sheep pituitary cells. Endocrinology 1994;134:935–944.

    Google Scholar 

  78. Gharib SD, Wierman ME, Shupnik MA, Chin WW. Molecular biology of the pituitary gonadotropins. Endocr Rev 1990; 11:177–198.

    Google Scholar 

  79. Shupnik MA, Gharib SD, Chin WW. Divergent effects of estradiol on gonadotropin gene transcription in pituitary fragments. Mol Endocrinol 1989;3:474–480.

    Google Scholar 

  80. Shupnik MA, Weinmann CM, Notides AC, Chin WW. An upstream region of the rat luteinizing hormone b gene binds estrogen receptor and confers estrogen responsiveness. J Biol Chem 1989;264:80–86.

    Google Scholar 

  81. Stumpf WE, Sar M Autoradiographic localization of estrogen, androgen, progestin and glucocorticosteroid in target tissues and non-target tissues, In: Pasqualini JR(ed). Receptors and Mechanism of Action of Steroid Hormone, 8 ed. New York: Marcel Dekker, 1976:41–84.

    Google Scholar 

  82. Keefer DA, Stumpf WE, Petrusz P. Quantitative autoradiographic assessment of 3H-estradiol uptake in immunocytochemically characterized pituitary cells. Cell Tissue Res 1976;166:25–35.

    Google Scholar 

  83. Stefaneanu L, Kovacs K. Immunocytochemistry approach to demonstrate the estrogen receptor in human adenohypophyses and pituitary adenomas with monoclonal antibody. Med Sci Res 1988;16:449–450.

    Google Scholar 

  84. Zafar M, Ezzat S, Ramyar L, Pan N, Smyth HS, Asa SL. Cell-specific expression of estrogen receptor in the human pituitary and its adenomas. J Clin Endocrinol Metab 1995; 80:3621–3627.

    Google Scholar 

  85. Friend KE, Chiou YK, Lopes MBS, Laws ER, Jr., Hughes KM, Shupnik MA. Estrogen receptor expression in human pituitary: Correlation with immunohistochemistry in normal tissue, and immunohistochemistry and morphology in macroadenomas. J Clin Endocrinol Metab 1994;78:1497–1504.

    Google Scholar 

  86. Nakao H, Koga M, Arao M, Nakao M, Sato B, Kishimoto S, Saitoh Y, Arita N, Mori S. Enzyme-immunoassay for estrogen receptors in human pituitary adenomas. Acta Endocrinol (Copenh) 1989;120:233–238.

    Google Scholar 

  87. Ironside JW, Dangerfield VJM, Timperley WR, Underwood JCE. Steroid hormone receptors in pituitary adenomas: A biochemical, immunohistochemical and morphometric study on cryostat sections. Neuropathol Appl Neurobiol 1986;12: 539–546.

    Google Scholar 

  88. Chaidarun SS, Klibanski A, Alexander JM. Tumor-specific expression of alternatively spliced estrogen receptor messenger ribonucleic acid variants in human pituitary adenomas. J Clin Endocrinol Metab 1997;82:1058–1065.

    Google Scholar 

  89. Simard J, Hubert JF, Hosseinzadeh T, Labrie F. Stimulation of growth hormone release and synthesis in rat anterior pituitary cells in culture. Endocrinology 1986;119:2004–2011.

    Google Scholar 

  90. Behringer RR, Mathews LS, Palmiter RD, Brinster RL. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev 1988;2:453–461.

    Google Scholar 

  91. Borrelli E, Heyman RA, Arias C, Sawchenko PE, Evans RM. Transgenic mice with inducible dwarfism. Nature 1989; 339:538–541.

    Google Scholar 

  92. Frawley LS. Mammosomatotropes: Current status and possible functions. Trends Endocrinol Metab 1989;1:31–34.

    Google Scholar 

  93. Asa SL, Ezzat S. Pituitary transcription factors and cytodifferentiation in the human fetus (abstract). Annales D'Endocrinologie (Paris) 58, 1S79. 1997.

    Google Scholar 

  94. Couse JF, Curtis SW, Washburn TF, Lubahn DB, Snedeker SM, Korach KS. Disruption of the mouse estrogen receptor gene: molecular characterization and resulting phenotypes (abstract). Endocrinology (Baltimore) (suppl), 467. 1994.

    Google Scholar 

  95. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 1993;90:11262–11166.

    Google Scholar 

  96. Scully KM, Glieberman AS, Lindzey J, Lubahn DB, Korach KS, Rosenfeld MG. Role of estrogen receptor-alpha in the anterior pituitary gland. Mol Endocrinol 1997;11:674–681.

    Google Scholar 

  97. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Speciker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1994;331:1056–1061.

    Google Scholar 

  98. Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjöd M, Gustafsson JA. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 1997;82:4258–4265.

    Google Scholar 

  99. Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulatory of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 1992;6: 1249–1258.

    Google Scholar 

  100. Morohashi K-I, Honda S-I, Inomata Y, Handa H, Omura T. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem 1992;267: 17913–17919.

    Google Scholar 

  101. Honda S-I, Morohashi K-I, Nomura M, Takeya H, Kitajima M, Omura T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily, J Biol Chem 1993;268:7494–7502.

    Google Scholar 

  102. Ikeda Y, Lala DS, Luo X, Kim E, Moisan M-P, Parker KL. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression. Mol Endocrinol 1993;7:852–860.

    Google Scholar 

  103. Morohashi K-I, Zanger UM, Honda S-I, Hara M, Waterman MR, Omura T. Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol Endocrinol 1993;7:1196–1204.

    Google Scholar 

  104. Morohashi K-I, Iida H, Nomura M, Hatano O, Honda S-I, Tsukiyama T, Niwa O, Hara T, Takakusu A, Shibata Y, Omura T. Functional difference between Ad4BP and ELP, and their distributions and steroidogenic tissues. Mol Endocrinol 1994;8:643–653.

    Google Scholar 

  105. Ikeda Y, Shen W-H, Ingraham HA, Parker KL. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 1994;8:654–662.

    Google Scholar 

  106. Shen W-H, Moore CCD, Ikeda Y, Parker KL, Ingraham HA. Nuclear receptor steroidogenic factor I regulates the Müllerian inhibiting substance gene: A link to the sex determination cascade. Cell 1994;77:651–661.

    Google Scholar 

  107. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77:481–490.

    Google Scholar 

  108. Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen W-H, Nachtigal MW, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 1994;8:2302–2312.

    Google Scholar 

  109. Ikeda Y, Luo X, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 1995;9:478–486.

    Google Scholar 

  110. Barnhart KM, Mellon PL. The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone a-subunit gene in pituitary gonadotropes. Mol Endocrinol 1994;8:878–885.

    Google Scholar 

  111. Asa SL, Bamberger A-M, Cao B, Wong M, Parker KL, Ezzat S. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 1996;81:2165–2170.

    Google Scholar 

  112. Ikuyama S, Ohe K, Sakai Y, Nakagaki H, Fukushima T, Kato Y, Morohashi K, Takayanagi R, Nawata H. Follicle stimulating hormone-beta subunit gene is expressed in parallel with a transcription factor AD4BP/SF-1 in human pituitary adenomas. Clin Endocrinol (Oxf) 1996;45:187–193.

    Google Scholar 

  113. Asa SL, Gerrie BM, Singer W, Horvath E, Kovacs K, Smyth HS. Gonadotropin secretion in vitro by human pituitary null cell adenomas and oncocytomas. J Clin Endocrinol Metab 1986;62:1011–1019.

    Google Scholar 

  114. Yamada S, Asa SL, Kovacs K, Muller P, Smyth HS. Analysis of hormone secretion by clinically nonfunctioning human pituitary adenomas using the reverse hemolytic plaque assay. J Clin Endocrinol Metab 1989;68:73–80.

    Google Scholar 

  115. Yamada S, Asa SL, Kovacs K. Oncocytomas and null cell adenomas of the human pituitary:morphometric and in vitro functional comparison. Virchows Arch [A] 1988;413:333–339.

    Google Scholar 

  116. Asa SL, Cheng Z, Ramyar L, Singer W, Kovacs K, Smyth HS, Muller P. Human pituitary null cell adenomas and oncocytomas in vitro: effects of adenohypophysiotropic hormones and gonadal steroids on hormone secretion and tumor cell morphology. J Clin Endocrinol Metab 1992;74:1128–1134.

    Google Scholar 

  117. Kumar TR, Graham KE, Asa SL, Low MJ. Simian virus 40 T antigen-induced gonadotroph adenomas: A model of human null cell adenomas. Endocrinology 1998;139:3342–3351.

    Google Scholar 

  118. McCormick A, Brady H, Theill LE, Karin M. Regulation of the pituitary-specific homeobox gene GHF-1 by cell-autonomous and environmental cues. Nature 1990;345:829–832.

    Google Scholar 

  119. Theill LE, Karin M. Transcriptional control of GH expression and anterior pituitary development. Endocr Rev 1993; 14:670–689.

    Google Scholar 

  120. Delegeane AM, Ferland LH, Mellon P. Tissue specific enhancer of the human glycoprotein hormone a subunit gene: Dependence on cAMP inducible elements. Mol Cell Biol 1987;7:3994–4002.

    Google Scholar 

  121. Struthers RS, Vale WW, Arias C, Sawchenko PE, Montminy MR. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREBmutant. Nature 1991;350:622–624.

    Google Scholar 

  122. Lipkin SM, Naar AM, Kalla KA, Sack RA, Rosenfeld MG. Identification of a novel zinc finger protein binding a conserved element critical for Pit-1-dependent growth hormone gene expression. Genes Dev 1993;7:1674–1687.

    Google Scholar 

  123. MacLeod K, LePrince D, Stehelin D. The ets gene family. Trends in Biochemical Science 1992;17:251–256.

    Google Scholar 

  124. Bradford AP, Conrad KE, Wasylyk C, Wasylyk B, Gutierrez-Hartmann A. Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: Mapping of the essential c-Ets-1 domain. MolCell Biol 1995;15:2849–2857.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asa, S.L., Ezzat, S. Molecular Determinants of Pituitary Cytodifferentiation. Pituitary 1, 159–168 (1999). https://doi.org/10.1023/A:1009948813587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009948813587

Navigation