Skip to main content
Log in

Object pose from 2-D to 3-D point and line correspondences

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper we present a method for optimally estimating the rotation and translation between a camera and a 3-D object from point and/or line correspondences. First we devise an error function and second we show how to minimize this error function. The quadratic nature of this function is made possible by representing rotation and translation with a dual number quaternion. We provide a detailed account of the computational aspects of a trust-region optimization method. This method compares favourably with Newton's method which has extensively been used to solve the problem at hand, with Faugeras-Toscani's linear method (Faugeras and Toscani 1986) for calibrating a camera, and with the Levenberg-Marquardt non-linear optimization method. Finally we present some experimental results which demonstrate the robustness of our method with respect to image noise and matching errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chasles, M. 1831. Note sur les propriétés générales des systèmes de deux corps semblables entre eux, placés d'une manière quelconque dans l'espace; et sur le déplacement fini ou infiniment petit d'un corps solide libre.Bulletin des Sciences Mathématiques de Férussac, XIV:321–326.

    Google Scholar 

  • Chen, H. 1991. Pose determination from line-to-plane correspondences: existence solutions and closed-form solutions.IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):530–541.

    Google Scholar 

  • Clermont, J.R., De La Lande, M.E., Tao, P.D., and Yassine, A. 1991. Analysis of plane and axis-symmetric flows of incompressible fluids with the stream tube method: numerical simulation by trust-region algorithm.International Journal for Numerical Methods in Fluids, 13:371–399.

    Google Scholar 

  • Dhome, M., Richetin, M., Lapreste, J.T., and Rives, G. 1989. Determination of the Attitude of 3D Objects from a Single Perspective View.IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(12):1265–1278.

    Google Scholar 

  • Faugeras, O.D., Luong, Q.T., and Maybank, S.J. 1992. Camera self-calibration: Theory and experiments. In G. Sandini, editor,Computer Vision—ECCV 92, Proceedings Second European Conference on Computer Vision, Santa Margherita Ligure, May 1992, Springer Verlag, pp. 321–334.

  • Faugeras, O.D. and Toscani, G. 1986. The calibration problem for stereo. InProc. Computer Vision and Pattern Recognition, Miami Beach, Florida, USA, pp. 15–20.

  • Faugeras, O.D. and Hébert, M. 1986. The representation, recognition, and locating of 3-d objects.International Journal of Robotics Research, 5(3):27–52.

    Google Scholar 

  • Fischler, M.A. and Bolles, R.C. 1981. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.Communications of the ACM, 24(6):381–395.

    Google Scholar 

  • Fletcher, R. 1990.Practical Methods of Optimization. John Wiley and Sons.

  • Ganapathy, S. 1984. Decomposition of transformation matrices for robot vision.Pattern Recognition Letters, 2(6):401–412.

    Google Scholar 

  • Gay, D.M. 1981. Computing optimal constrained steps.SIAM Journal on Scientific and Statistical Computation.

  • Gill, P.E., Murray, W., and Wright, M.H. 1989.Practical Optimization. Academic Press, London.

    Google Scholar 

  • Haralick, R.B., Joo, H., Lee, C.-N., Zhuang, X., Vaidya, V.G., and Kim, M.B. 1989. Pose estimation from corresponding point data.IEEE Transactions on Systems, Man, and Cybernetics, 19(6):1426–1445.

    Google Scholar 

  • Hebden, M.D. 1973. An algorithm for minimization using exact second derivatives. Technical Report TP 515, Atomic Energy Research Establishment, Harwell, England.

    Google Scholar 

  • Holt, R.J. and Netravali, A.N. 1991. Camera calibration problem: some new results.CGVIP—Image Understanding, 54(3):368–383.

    Google Scholar 

  • Horaud, R., Conio, B., Leboulleux, O., and Lacolle, B. 1989. An Analytic Solution for the Perspective 4-Point Problem.Computer Vision, Graphics, and Image Processing, 47(1):33–44.

    Google Scholar 

  • Horn, B.K.P. 1987. Closed-form solution of absolute orientation using unit quaternions.J. Opt. Soc. Amer. A., 4(4):629–642.

    Google Scholar 

  • Hung, Y., Yeh, P.-S., and Harwood, D. 1985. Passive ranging to known planar point sets. InProc. IEEE Int. Conf. on Robotics and Automation, Saint-Louis, Missouri, USA, pp. 80–85.

  • Kumar, R. and Hanson, A.R. 1989. Robust estimation of camera location and orientation from noisy data having outliers. InProc. Workshop on Interpretation of 3-D Scenes, Austin, Texas, USA, pp. 52–60.

  • Liu, Y., Huang, T.S., and Faugeras, O.D. 1990. Determination of camera location from 2-d to 3-d line and point correspondences.IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):28–37.

    Google Scholar 

  • Lowe, D. 1987. Three-dimensional Object Recognition from Single Two-dimensional Images.Artificial Intelligence, 31:355–395.

    Google Scholar 

  • Lowe, D. 1991. Fitting parameterized three-dimensional models to images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5):441–450.

    Google Scholar 

  • Moré, J.J. 1978. The Levenberg-Marquart algorithm: Implementation and theory. In G.E. Watson, editor,Lecture Notes in Mathematics 630, Springer-Verlag, pp. 105–116.

  • Moré, J.J. 1983. Recent developments in algorithms and software for trust region methods. In A. Bchem, M. Grötschel, and B. Korte, editors,Mathematical Programming: The State of the Art, Springer Verlag, Berlin, pp. 258–287.

    Google Scholar 

  • Moré, J.J. and Sorensen, D.C. 1979. On the use of directions of negative curvature in a modified Newton method.Mathematical Programming, pp. 1–20.

  • Puget, P. and Skordas, Th. 1990. An Optimal Solution for Mobile Camera Calibration. In O. Faugeras, editor,Computer Vision—ECCV 90, Proceedings First European Conference on Computer Vision, Antibes, France, Springer Verlag, pp. 187–198.

  • Soresen, D.C. 1982. Newton's method with a model trust region modification.SIAM Journal on Numerical Analysis, 19(2):409–426.

    Google Scholar 

  • Tao, P.D., Wang, S., and Yassine, A. 1990. Training multi-layered neural networks with a trust-region based algorithm.Mathematical Modelling and Numerical Analysis, 24(4):523–553.

    Google Scholar 

  • Tsai, R.Y. 1987. A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses.IEEE Journal of Robotics and Automation, RA-3(4):323–344.

    Google Scholar 

  • Walker, M.W., Shao, L., and Volz, R.A. 1991. Estimating 3-d location parameters using dual number quaternions.CGVIP—Image Understanding, 54(3):358–367.

    Google Scholar 

  • Yassine, A. 1989. Etudes Adaptatives et Comparatives de Certains Algorithmes en Optimisation. Implémentation Effectives et Applications. PhD thesis, Université Joseph Fourier, Grenoble.

    Google Scholar 

  • Yuan, J.S.-C. 1989. A general photogrammetric method for determining object position and orientation.IEEE Transactions on Robotics and Automation, 5(2):129–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the Esprit programme through the SECOND project (Esprit-BRA No. 6769).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phong, T.Q., Horaud, R., Yassine, A. et al. Object pose from 2-D to 3-D point and line correspondences. Int J Comput Vision 15, 225–243 (1995). https://doi.org/10.1007/BF01451742

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451742

Keywords

Navigation