Skip to main content
Log in

Experiments on the postbuckling behavior of circular cylindrical shells under compression

Precise experimental results are presented clarifying the whole aspect of the postbuckling behavior of circular cylindrical shells under compression for a wide range of shell geometries

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Detailed experimental studies are performed on the postbuckling behavior of circular cylindrical shells under compression, by using polyester test cylinders with the geometric parameterZ ranging from 20 to 1000. In each case, variations of the equilibrium load, circumferential wave number and maximum inward and outward deflections, with applied edge shortenings, are clarified. Contour lines for typical postbuckling configurations are also shown. It is found that, as the cylinder is compressed beyond the primary buckling, secondary bucklings take place successively with diminishing wave numbers, and that postbuckling equilibrium loads become significantly lower than those at buckling asZ increases. Further, for short shells withZ≦100, the buckled waveforms are always symmetric with one-tier diamond buckles, while for longer shells, asymmetric postbuckling patterns with two tiers of buckles dominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

R :

shell radius

L :

shell length

h :

shell thickness

E :

Young's modulus

ν:

Poisson's ratio

P :

compressive load

δ:

edge shortening

n :

wave number

w :

deflection

w m :

maximum deflection

x :

axial coordinate

θ:

angular coordinate

P cl :

\(2\pi Eh^2 /\sqrt {3(1 - v^2 )} \) classical buckling load

n cl :

\([(3/4)(1 - v^2 )]^{1/4} \sqrt {R/h} \) classical wave number

Z :

\(\sqrt {1 - v^2 } L^2 /Rh\)

Σ:

P/P cl

μ:

n/n cl

\(\bar \delta \) :

Rδ/Lh

References

  1. Hoff, N. J. andSoong, T. C., “Buckling of Circular Cylindrical Shells in Axial Compression,”Int. Jnl. Mech. Sci.,7,489–520 (1965).

    Google Scholar 

  2. Yamaki, N. andKodama, S., “Buckling of Circular Cylindrical Shells under Compression,”Report 1, Rep. Inst. High Speed Mech., Tohoku Univ.,23,99–123 (1971);Report 2, Ibid.,24,111–142 (1971).

    Google Scholar 

  3. Almroth, B. O., “Influence of Edge Conditions on the Stability of Axially Compressed Cylindrical Shells,”AIAA Jnl.,4,134–140 (1966).

    Google Scholar 

  4. Gorman, D. J. andEvan-Iwanowski, R. M., “An Analytical and Experimental Investigation of the Effects of Large Prebuckling Deformations on the Buckling of Clamped Thin-Walled Circular Cylindrical Shells Subjected to Axial Loading and Internal Pressure,”Dev. Theo. Appl. Mech.,4,415–426 (1970).

    Google Scholar 

  5. Yamaki, N. andKodama, S., “Buckling of Circular Cylindrical Shells under Compression,”Report 3, Rep. Inst. High Speed Mech., Tohoku Univ.,25,99–141 (1972);Report 4, Ibid.,27,1–30 (1973).

    Google Scholar 

  6. Weingarten, V. I., Morgan, E. J. andSeide, P., “Elastic Stability of Thin-Walled Cylindrical and Conical Shells under Axial Compression,”AIAA Jnl.,3,500–505 (1965).

    Google Scholar 

  7. Tennyson, R. C., “Buckling Modes of Circular Cylindrical Shells under Axial Compression,”AIAA Jnl.,7,1481–1487 (1969).

    Google Scholar 

  8. von Kármán, Th. andTsien, H. S., “The Buckling of Thin Cylindrical Shells under Axial Compression,”Jnl. Aeron. Sci.,8,303–312 (1941).

    Google Scholar 

  9. Kempner J., “Postbuckling Behavior of Axially Compressed Circular Cylindrical Shells,”Jnl. Aeron. Sci. 21,329–335,342 (1954).

    MATH  Google Scholar 

  10. Thielemann, W. F., “New Developments in the Nonlinear Theories of the Buckling of Thin Cylindrical Shells,” Aeronautics and Astronautics, Proc. Durand Centennial Conf., 76–121 (1959).

  11. Almroth, B. O., “Postbuckling Behavior of Axially Compressed Circular Cylinders,”AIAA Jnl.,1,630–633 (1963).

    Google Scholar 

  12. Hoff, N. J., Madsen, W. A. andMayers, J., “Postbuckling Equilibrium of Axially Compressed Circular Cylindrical Shells,”AIAA Jnl.,4,126–133 (1966).

    Google Scholar 

  13. Jones, R. M., “Toward a New Snap-Through Buckling Criterion for Axially Compressed Circular Cylindrical Shells,”AIAA Jnl.,4,1526–1530 (1966).

    Google Scholar 

  14. Esslinger, M. andGeier, B., “Gerechnete Nachbeullasten als untere Grenze der experimentellen axialen Beullasten von Kreiszylindern,”Der Stahlbau,41,353–360 (1972).

    Google Scholar 

  15. Appel, H., “Beitrag zum Nachbeulverhalten von dünnwandigen Längsgedrückten Kreiszylinderschalen endlicher Länge,”Der Stahlbau,37,20–24 (1968).

    Google Scholar 

  16. de Neufville, R. L. and Connor, Jr., J. J., “Postbuckling Behavior of Thin Cylinders,” Jnl. Engng. Mech. Division, Proc. ASCE, 94-EM2, 585–603 (1968).

  17. Árbocz, J. andBabcock, Jr., C. D., “The Effect of General Imperfections on the Buckling of Cylindrical Shells,”Trans. ASME, Ser. E, Jnl. Appl. Mech.,36,28–38 (1969).

    Google Scholar 

  18. Hutchinson, J. W., Tennyson, R. C. andMuggeridge, D. B., “Effects of a Local Axisymmetric Imperfection on the Buckling Behavior of a Circular Cylindrical Shell under Axial Compression,”AIAA Jnl.,9,48–52 (1971).

    Google Scholar 

  19. Budiansky, B. and Hutchinson, J. W., “Buckling of Circular Cylindrical Shells under Axial Compression,” Contributions to the Theory of Aircraft Structures, Delft Univ. Press, 239–259 (1972).

  20. Yamaki, N. andOtomo, K., “Experiments on the Postbuckling Behavior of Circular Cylindrical Shells Under Hydrostatic Pressure,”Experimental Mechanics,13(7),299–304 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaki, N., Otomo, K. & Matsuda, K. Experiments on the postbuckling behavior of circular cylindrical shells under compression. Experimental Mechanics 15, 23–28 (1975). https://doi.org/10.1007/BF02318521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02318521

Keywords

Navigation