Skip to main content
Log in

Subsonic radiation waves

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ya. B. Zel'dovich and Yu. P. Raizer,Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. 1 and 2, Scripta Technica, New York (1966, 1967).

    Google Scholar 

  2. F. V. Bunkin, V. I. Konov, A. M. Prokhorov, and V. B. Fedorov, “Laser spark in the “slow combustion” regime,”Pis'ma Zh. Eksp. Teor. Fiz.,9, 609 (1969).

    Google Scholar 

  3. Yu. P. Raizer,Laser-Induced Discharge Phenomena, Consultants Bureau, New York (1977).

    Google Scholar 

  4. I. V. Nemchinov, “Slow and fast optical combustion waves,”Fiz. Goreniya Vzryva,18, 71 (1982).

    Google Scholar 

  5. V. I. Bergel'son, T. V. Loseva, and I. V. Nemchinov, “Numerical calculation of the problem of the propagation of a plane subsonic radiation wave through a gas in a direction opposite to that of the optical radiation flux,”Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 22 (1974).

    Google Scholar 

  6. E. A. Kozik, T. V. Loseva, I. V. Nemchinov, and V. V. Novikova, “Subsonic radiation waves propagating from an obstacle toward the source of CO2 laser radiation,”Kvantovaya Elektron. (Moscow),5, 2138 (1978).

    Google Scholar 

  7. J. P. Jackson and P. E. Nielsen, “Role of radiative transport in the propagation of laser supported combustion waves,”AIAA J.,12, 1498 (1974).

    Google Scholar 

  8. V. I. Bergel'son, T. V. Loseva, I. V. Nemchinov, and T. I. Orlova, “Propagation of plane supersonic radiation waves,”Fiz. Plazmy,1, 912 (1977).

    Google Scholar 

  9. I. É. Markovich, I. V. Nemchinov, A. I. Petrukhin,et al., “Superdetonation waves in air propagating against a laser beam,”Pis'ma Zh. Tekh. Fiz.,3, 101 (1977).

    Google Scholar 

  10. I. V. Nemchinov, “Averaged radiative transport equations and their use in solving gas dynamic problems,”Prikl. Mat. Mekh.,34, 706 (1970).

    Google Scholar 

  11. I. V. Avilova, L. M. Biberman, V. S. Vorob'ev,et al., Optical Properties of Hot Air [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  12. G. A. Kobzev and V. A. Nuzhnyi, “Spectral and integral optical characteristics of the continuous spectrum of an air plasma with allowance for spectral lines,T=20 000–30 000°K,” Preprint No. 1-134 [in Russian], Institute of High Temperatures of the Academy of Sciences, Moscow (1984).

    Google Scholar 

  13. N. M. Kuznetsov,Thermodynamic Functions and Shock Adiabatic Curves of Air at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).

    Google Scholar 

  14. T. V. Loseva and I. V. Nemchinov, “Subsonic radiation waves. Comparison of theory with experiment,”Kvantovaya Elektron. (Moscow),9, 1373 (1982).

    Google Scholar 

  15. T. V. Loseva and I. V. Nemchinov, “Subsonic radiation waves absorbing laser emission near an obstacle in air,”Fiz. Goreniya Vzryva, No. 1, 93 (1981).

    Google Scholar 

  16. T. V. Loseva and I. V. Nemchinov, “Parameters of subsonic radiation waves,” in:Proceedings of the Fourth All-Union Conference on Radiative Gas Dynamics, Vol. 1 [in Russian], Izd. MGU, Moscow (1981), p. 62.

    Google Scholar 

  17. T. V. Loseva and I. V. Nemchinov, “Subsonic radiation waves in neon,”Kvantovaya Elektron. (Moscow),16, 333 (1989).

    Google Scholar 

  18. I. V. Nemchinov and V. M. Khazins, “Limits of existence of optical detonation maintained by short-wave monochromatic radiation,”Kvantovaya Elektron. (Moscow),16, 79 (1989).

    Google Scholar 

  19. K. I. Shchelkin and Ya. K. Troshin,Combustion Gas Dynamics [in Russian], Izd. AN SSSR, Moscow (1963).

    Google Scholar 

  20. E. A. Berchenko, A. P. Sobolev, and B. T. Fedyushin, “Propagation of laser absorption waves in a gas,”Kvantovaya Elektron. (Moscow),6, 1546 (1979).

    Google Scholar 

  21. I. V. Nemchinov, A. I. Petrukhin, V. A. Rybakov,et al., “Origination of optical detonation from an optical combustion wave,”Dokl. Akad. Nauk SSSR,244, 877 (1979).

    Google Scholar 

  22. I. V. Nemchinov, “Absorption waves in gases,”Izv. Akad. Nauk SSSR, Ser. Fiz.,46, 1026 (1982).

    Google Scholar 

  23. I. V. Nemchinov, A. I. Petrukhin, Yu. E. Pleshanov, and V. A. Rybakov, “Expansion of plasma layer near a laser-irradiated target in high-density gases,”Dokl. Akad. Nauk SSSR,247, 1368 (1979).

    Google Scholar 

  24. A. I. Petrukhin, Yu. E. Pleshanov, and V. A. Rybakov, “Experimental investigation of the plane-geometry interaction of a laser pulse and a target surrounded by high-pressure gas,”Fiz. Khim. Obrab. Materialov., No. 4, 3 (1981).

    Google Scholar 

  25. V. I. Mazhukin, A. A. Uglov, and B. N. Chetverushkin, “Low-temperature laser plasma near metal surfaces in high-pressure gases. Review,”Kvantovaya Elektron. (Moscow),10, 679 (1983).

    Google Scholar 

  26. V. P. Leventuev and I. V. Nemchimov, “Shock wave propagation from a hot expanding volume,”Fiz. Goreniya Vzryva,11, 776 (1975).

    Google Scholar 

  27. G. G. Gladush, A. F. Mamzer, and A. N. Yavokhin, “Two-dimensional calculation of a continuous optical discharge,” Preprint No. 4025/16 [in Russian], Kurchatov Institute of Atomic Energy, Moscow (1984).

    Google Scholar 

  28. M. I. Volchinskaya, V. I. Mazhukin, G. E. Repina, and B. N. Chetverushkin, “Numerical modeling of the two-dimensional problem of plasma discharge propagation,”Zh. Vychisl. Mat. Mat. Fiz.,22, 171 (1982).

    Google Scholar 

  29. Yu. P. Raizer and A. Yu. Silant'ev, “Two-dimensional calculation of the temperature field of a continuous optical discharge in air,”Kvantovaya Elektron. (Moscow),13, 593 (1986).

    Google Scholar 

  30. Yu. P. Raizer and S. T. Surzhikov, “Continuous optical díscharge under conditions of thermal gravitational convection,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 124 (1989).

    Google Scholar 

  31. M. A. El'yashevich, L. Ya. Min'ko, G. S. Romanov,et al., “Dynamics of the plasma formed as a result of the action of laser radiation on a solid target,”Izv. Akad. Nauk SSSR, Ser. Fiz.,49, 1132 (1985).

    Google Scholar 

  32. I. V. Nemchinov, M. P. Popova, and L. P. Shubadeeva, “Propagation of a two-dimensional supersonic radiation wave,”Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 34 (1977).

    Google Scholar 

  33. I. V. Nemchinov, M. P. Popova, and L. P. Shubadeeva, “Calculation of supersonic radiation waves with allowance for the motion of the plasma,”Inzh.-Fiz. Zh.,43, 577 (1982).

    Google Scholar 

  34. A. S. Kholodov, “Construction of difference schemes with positive approximation for equations of hyperbolic type,”Zh. Vychisl. Mat. Mat. Fiz.,18, 1476 (1978).

    Google Scholar 

  35. A. A. Samarskii and Yu. P. Popov,Difference Schemes of Gas Dynamics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  36. V. V. Demchenko and V. D. Markin, “A family of exact solutions of the multidimensional nonlinear heat conduction equation,”Zh. Vychisl. Mat. Mat. Fiz.,25, 461 (1985).

    Google Scholar 

  37. V. M. Belotserkovskii, V. V. Demchenko, V. I. Kosarev, and A. S. Kholodov, “Numerical modeling of some problems of laser compression of shells,”Zh. Vychisl. Mat. Mat. Fiz.,18, 420 (1978).

    Google Scholar 

  38. K. G. Gus'kov, Yu. P. Raizer, and S. T. Surzhikov, “Observable velocity of slow motion of an optical discharge,”Kvantovaya Elektron. (Moscow),17, 937 (1990).

    Google Scholar 

  39. A. F. Goncharenko, I. V. Nemchinov, and V. M. Khazins, “Calculation of the motion of the gas behind a optical detonation wave front with allowance for lateral expansion of the plasma column,”Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 18 (1976).

    Google Scholar 

  40. G. I. Taganov, “Some problems of the hydrodynamics of jet flows,” in:Abstracts of Proceedings of the Third All-Union Congress of Theoretical and Applied Mechanics [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  41. I. V. Bergel'son, I. V. Nemchinov, T. I. Orlova,et al., “Self-similar development of the precursor in front of a shock wave interacting with a thermal layer,”Dokl. Akad. Nauk SSSR,296, 554 (1987)

    Google Scholar 

  42. V. I. Bergel'son, I. V. Nemchinov, T. I. Orlova, and V. M. Khazins, “Self-similar flows associated with instantaneous energy release in a gas containing channels of reduced density,”Dokl. Akad. Nauk SSSR,305, 1100 (1989).

    Google Scholar 

  43. V. I. Artem'ev, V. I. Bergel'son, A. A. Kalmykov,et al., “Precursor developmental the interaction between a shock wave and a layer of reduced density,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 158 (1988).

    Google Scholar 

  44. V. I. Artem'ev, V. I. Bergel'son, A. A. Kalmykov,et al., “Formation of new gas dynamic flow structures associated with the density disturbance in thin elongated channels ahead of a shock front,”Mat. Modelirovanie.,1, 1 (1989).

    Google Scholar 

  45. V. I. Artem'ev, V. I. Bergel'son, I. V. Nemchinov,et al., “Change of regime in supersonic flow past an obstacle preceded by a thin channel of reduced density,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 146 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 166–183, September–October, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loseva, T.V., Nemchinov, I.V. Subsonic radiation waves. Fluid Dyn 28, 720–733 (1993). https://doi.org/10.1007/BF01050059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050059

Keywords

Navigation