Skip to main content
Log in

The role of hydrogen in corrosion cracking of reinforcing steel

  • The Phenomenology and Mechanism of Hydrogen Embrittlement of Metals and Alloys
  • Published:
Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literature cited

  1. P. Azou, “Congress international de l'hydrogene dans les metaux. Conclusions gnrales,” Mec. Mater., Elec., No. 272–273, 7–8 (1972).

    Google Scholar 

  2. S. Szklarska-Smialowska, “Various forms of localized corrosion in iron and steel. Common features and differences,” Brit. Corros. J.,10, No. 1, 11–16 (1975).

    Google Scholar 

  3. L. Graf, “Was spricht gegen Aufreissen von Deckschichten und gegen eine Verspodung als Ursachen der Spannungsrisskorrosien,” Z. Metallkunde,66, No. 12, 749–754 (1975).

    Google Scholar 

  4. K. N. Tseikovich and V. V. Gerasimov, “The question of the mechanism of the origin of corrosion cracks,” Fiz.-Khim. Mekh. Mater., No. 4, 398–402 (1969).

    Google Scholar 

  5. I. M. Bernstein, “The role of hydrogen in the embrittlement of iron and steel,” Mater. Sci. Eng.,6, No. 1, 1–19 (1970).

    Google Scholar 

  6. R. O. Ritchie, G. Gedeno, V. F. Zackay, and E. R. Parker, “Effect of silicon addition and retained austenite on stress corrosion cracking in ultrahigh strength steels,” Met. Trans.,9A, No. 1, 35–40 (1928).

    Google Scholar 

  7. A. M. Krutsan, O. N. Chaplya, and I. I. Vasilenko, “Corrosion crackiag of hardened steels in a sodium chloride solution,” Fiz.-Khim. Mekh. Mater., No. 1, 70–75 (1978).

    Google Scholar 

  8. W. A. Tiller, “The hydrogen pump model revisited,” Scr. Met.,8, No. 5, 487–491 (1974).

    Google Scholar 

  9. S. Shimodaira, “Corrosion cracking of alloys under stress,” Nikhon Kindzoku Gakkai Kaikho,14, No. 11, 811–826 (1975).

    Google Scholar 

  10. M. Auconturier, “Corrosion sous contrainte et fragilisation par l'hydrogene tentative de bilan a partir d'etudes recentes,” in: Hydrogen in Metals. Froc. 2nd Int. Congr., Paris, 1977, Vol. 1, Oxford (1978), pp. M4/1-M4/9.

    Google Scholar 

  11. V. T. Cherepin and M. A. Vasil'ev, Secondary Ion-Ion Emission of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  12. W. R. Heller, “Quantum effect in diffusion: internal friction due to hydrogen and deuterium dissolved in α-iron,” Acta Met.,9, No. 6, 600–613 (1961).

    Google Scholar 

  13. R. Gibala, “Internal friction in hydrogen charged iron,” Trans. Met. Soc. AIME,239, No. 10, 1574–1585 (1967).

    Google Scholar 

  14. E. Indzima and K. Kharano, “The diffusion of hydrogen in metals,” Nikhon Kindzoku Gakkai Kaikho,14, No. 8, 599–620 (1975).

    Google Scholar 

  15. N. N. Perevalov, M. V. Selivanov, and L. A. Shvartsman, “Hydrogen embrittlement of steels,” Review Information of the Central Scientific-Research Institute for Information and Technical and Economic Investigations in Ferrous Metallurgy [in Russian], Ser. 12, No. 1 (1978).

  16. B. Chew and F. T. Fabling, “The effect of grain boundaries on low-temperature diffusion of hydrogen in decarburized mild steel,” Met. Sc. J.,6, No. 3, 140–142 (1972).

    Google Scholar 

  17. D. M. Allen-Booth and J. Hevitt, “A mathematical model describing the effects of microvoids upon the diffusion of hydrogen in iron and steel,” Acta Met.,22, No. 2, 171–175 (1974).

    Google Scholar 

  18. J. J. Au and H. K. Birnbaum, “Magnetic relaxation studies of hydrogen in iron: relaxation spectra,” Scr. Met.,7, No. 6, 595–601 (1973).

    Google Scholar 

  19. H. Inagaki, M. Tanimura, I. Matsushita, and T. Nishimura, “Effect of Cu on the hydrogen-induced cracking of the pipe line steel,” Trans. Iron Steel Inst. Jpn.,18, No. 3, 149–156 (1978).

    Google Scholar 

  20. V. N. Gridnev, V. G. Gavrilyuk, and Yu. Ya. Meshkov. The Strength and Ductility of Cold-Deformed Steel [in Russian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  21. H. Uhlig, K. E. Perumal, and M. Talerman, “Stress corrosion cracking of iron in nitrates: effect of carbon and low alloying additions,” Corrosion (USA),30, No. 7, 229–236 (1974).

    Google Scholar 

  22. P. C. Hughes, I. R. Lamborn, and B. B. Liebert, “Delayed fracture of low-alloy high-strength steel at controlled corrosion rates,” J. Iron Steel Inst.,203, 728–731 (1965).

    Google Scholar 

  23. S. S. Nosyreva, “The influence of structure on the diffusion of hydrogen in steel,” Stal'8, No. 7, 542–544 (1948).

    Google Scholar 

  24. W. C. Leslie, “Iron and its dilute substitutional solid solutions,” Met. Trans.,3, No. 1, 5–26 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 17, No. 1, pp. 42–46, January–February, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilyuk, V.G., Kostyuchenko, V.G., Mashlenko, F.I. et al. The role of hydrogen in corrosion cracking of reinforcing steel. Mater Sci 17, 38–41 (1981). https://doi.org/10.1007/BF01156728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01156728

Keywords

Navigation