Skip to main content
Log in

Towards reusable real-time objects

  • Published:
Annals of Software Engineering

Abstract

Large and complex real-time systems can benefit significantly from a component-based development approach where new systems are constructed by composing reusable, documented and previously tested concurrent objects. However, reusing objects which execute under real-time constraints is problematic because application specific time and synchronization constraints are often embedded in the internals of these objects. The tight coupling of functionality and real-time constraints makes objects interdependent, and as a result difficult to reuse in another system. We propose a model which facilitates separate and modular specification of real-time constraints, and show how separation of real-time constraints and functional behavior is possible. We present our ideas using the Actor model to represent untimed objects, and the Real-time Synchronizers language to express real-time and synchronization constraints. We discuss specific mechanisms by which Real-time Synchronizers can govern the interaction and execution of untimed objects. We treat our model formally, and succinctly define what effect real-time constraints have on a set of concurrent objects. We briefly discuss how a middleware scheduling and event-dispatching service can use the synchronizers to execute the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, B., Agha, G. Towards reusable real-time objects. Annals of Software Engineering 7, 257–282 (1999). https://doi.org/10.1023/A:1018986121470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018986121470

Keywords

Navigation