Skip to main content
Log in

Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X

Physiological resemblance with other Gram-negative bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Xanthobacter 124X when grom on 4-hydroxyphenylacetate was able to hydroxylate this compound yielding homogenisate. Ring fission of this latter compound gave maleylacetoacetate which was isomerized to fumarylacetoacetate. The isomerase involved resembled maleylacetoacetate isomerases in Gram-negative bacteria in that glutathione was required for activity. Fumarate and acetoacetate were both detected as products of the hydrolysis of fumarylacetoacetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, K., Takeda, Y., Senoh, S. & Kita, H. (1964) Metabolism of p-hydroxyphenylacetic acid in Pseudomonas ovalis. Biochim. Biophys. Acta 93: 483–493

    Google Scholar 

  • Blakley, E. R., Halvorson, H. & Kurz, W. (1967) The microbial production and some characteristics of δ-carboxymethyl-α-hydroxymuconic semialdehyde. Can. J. Microbiol. 13: 159–165

    Google Scholar 

  • Chapman, P. J. & Dagley, S. (1962) Oxidation of homogentisic acid by cell-free extracts of a vibrio. J. Gen. Microbiol. 28: 251–256

    Google Scholar 

  • Crawford, R. L. (1976) Degradation of homogentisate by strains of Bacillus and Moraxella. Can. J. Microbiol. 22: 276–280

    Google Scholar 

  • Crawford, R. L. & Frick, T. D. (1977) Rapid spectrophotometric differentiation between glutathione-dependent and glutathione-independent gentisate and homogentisate pathways. Appl. Environ. Microbiol. 34: 170–174

    Google Scholar 

  • Dagley, S. & Wood, J. M. (1965) Oxidation of phenylacetic acid by a Pseudomonas Biochim. Biophys. Acta 99: 383–385

    Google Scholar 

  • Fahey, R. C., Brown, W. C., Adams, W. B. & Worsham, M. B. (1978) Occurrence of glutathione in bacteria. J. Bact. 133: 1126–1129

    Google Scholar 

  • Ginkel van, C. G. & Bont de, J. A. M. (1986) Isolation and characterization of alkene utilizing Xanthobacter spp. Arch. Microbiol, in press

  • Hagedorn, S. R. & Chapman, P. J. (1985) Glutathione-independent maleylacetoacetate isomerase in Gram-positive bacteria. J. Bact. 163: 803–805

    Google Scholar 

  • Hagedorn, S. R., Bradley, G. & Chapman, P. J. (1985) Glutathione-independent isomerization of maleylpyruvate by Bacillus megaterium and other Gram-positive bacteria. J. Bact. 163: 640–647

    Google Scholar 

  • Hertzberg, S. H., Borch, G. & Liaaen-Jensen, S. (1976) Bacterial carotenoids. Absolute configuration of zeaxanthin dirhamnoside. Arch. Microbiol. 110: 95–99

    Google Scholar 

  • Janssen, D. B., Scheper, A., Dijkhuizen, L. & Witholt, B. (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49: 673–677

    Google Scholar 

  • Knox, W. E. & Edwards, S. W. (1955) The properties of maleylacetoacetate, the initial product of homogentisate oxidation in liver. J. Biol. Chem. 216: 489–498

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Malik, K. A. & Claus, D. (1979) Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria. Int. J. Syst. Bacteriol. 29: 283–287

    Google Scholar 

  • Minnikin, D. E., Alshamaony, L. & Goodfellow, M. (1975) Differentation of Mycobacterium, Nocardia and related taxa by thinlayer chromatography analysis of whole-organism methanolysates. J. Gen. Microbiol. 88: 200–204

    Google Scholar 

  • Sparnins, V. L., Chapman, P. J. & Dagley, S. (1974) Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. J. Bact. 120: 159–167

    Google Scholar 

  • Trower, M. K., Buckland, R. M., Higgins, R. & Griffin, M. (1985) Isolation and characterization of a cyclohexane-metabolizing Xanthobacter sp. Appl. Environ. Microbiol. 49: 1282–1289

    Google Scholar 

  • Tweelvan den, W. J. J., Smits, J. P. & Bontde, J. A. M. (1986) Microbial metabolism of D- and L-phenylglycine by Pseudomonas putida LW-4. Arch. Microbiol. 144: 169–174

    Google Scholar 

  • Walker, P. G. (1954) A colorimetric method for the estimation of acetoacetate. Biochem. J. 58: 699–704

    Google Scholar 

  • Wiegel, J. (1981) Distinction between the Gram reaction and the Gram type of bacteria. Int. J. Syst. Bacteriol. 31: 88

    Google Scholar 

  • Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R. & Schlegel, H. G. (1978) Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int. J. Syst. Bacteriol. 28: 573–581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Den Tweel, W.J.J., Janssens, R.J.J. & De Bont, J.A.M. Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X. Antonie van Leeuwenhoek 52, 309–318 (1986). https://doi.org/10.1007/BF00428642

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428642

Key words

Navigation