Skip to main content
Log in

Enzyme diversity and mosaic gene organization in denitrification

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Denitrification is a main branch of the global nitrogen cycle. In the past ten years unravelling the underlying biochemistry and genetics has proceeded at an increasing pace. Fungal denitrification has become a new field. The biochemical investigation of denitrification has culminated in the description of the crystal structures of the two types of nitrite reductases. The N2O reductase shares with cytochrome c oxidase the CuA center as a structurally novel metal site. The cytochrome b subunit of NO reductase has a striking conservation of heme-binding transmembrane segments versus the subunit I of cytochrome c oxidase. Another putative denitrification gene product shows structural relation to the subunit III of the oxidase. N2O reductase and NO reductase may be ancestors of energy-conserving enzymes of the heme-copper oxidase superfamily. More than 30 genes for denitrification are located in a >30-kb cluster in Pseudomonas stutzeri, and comparable gene clusters have been identifi ed in Pseudomonas aeruginosa and Paracoccus denitrificans. Genes necessary for nitrite reduction and NO reduction have a mosaic arrangement with very few conserved locations within these clusters and relative to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham ZHL, Lowe DJ & Smith BE (1993) Purification and characterization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp. xylosoxidans (NCIMB 11015): evidence for the presence of both type 1 and type 2 copper centres. Biochem J 295: 587–593

    Google Scholar 

  • Adman ET, Godden JW & Turley S (1995) The structure of coppernitrite reductase from Achromobacter cycloclastes at five pH values, with NO2 -bound and with type II copper depleted. J Biol Chem 270: 27458–27474

    Google Scholar 

  • Allen MB & van Niel CB (1952) Experiments on bacterial denitrification. J Bacteriol 64: 397–412

    Google Scholar 

  • Antholine WE, Kastrau DHW, Steffens GCM, Buse G, Zumft WG & Kroneck PMH (1992) A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase. Eur J Biochem 209: 875–881

    Google Scholar 

  • Arai H, Igarashi Y & Kodama T (1994) Structure and ANR-dependent transcription of the nir genes for denitrification from Pseudomonas aeruginosa. Biosci Biotechnol Biochem 58: 1286–1291

    Google Scholar 

  • — (1995a) Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371: 73–76

  • — (1995b) The structural genes for nitric oxide reductase from Pseudomonas aeruginosa. Biochim Biophys Acta 1261: 279–284

  • Augier V, Guigliarelli B, Asso M, Bertrand P, Frixon C, Giordano G, Chippaux M & Blasco F (1993) Site-directed mutagenesis of conserved cysteine residues within the β-subunit of Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of the mutated enzymes. Biochemistry 32: 2013–2023

    Google Scholar 

  • Ballard AL & Ferguson SJ (1988) Respiratory nitrate reductase from Paracoccus denitrificans. Evidence for two b-type haems in the τ-subunit and properties of a water-soluble active enzyme containing α and β subunits. Eur J Biochem 174: 207–212

    Google Scholar 

  • Beijerinck MW & Minkman DCJ (1910) Bildung und Verbrauch von Stickoxydul durch Bakterien. Centralbl für Bakteriol, Abt 2, 25: 30–63

    Google Scholar 

  • Bell LC, Richardson DJ & Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha: the periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett 265: 85–87

    Google Scholar 

  • Bergmann DJ, Arciero DM & Hooper AB (1994) Organization of the hao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes. J Bacteriol 176: 3148–3153

    Google Scholar 

  • Berks BC, Richardson DJ, Robinson C, Reilly A, Aplin RT & Ferguson SJ (1994) Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur J Biochem 220: 117–124

    Google Scholar 

  • Berks BC, Richardson DJ, Reilly A, Willis AC & Ferguson SJ (1995) The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J 309: 983–992

    Google Scholar 

  • Blümle S & Zumft WG (1991) Respiratory nitrate reductase from denitrifying Pseudomonas stutzeri, purification, properties and target of proteolysis. Biochim Biophys Acta 1057: 102–108

    Google Scholar 

  • Braun C & Zumft WG (1991) Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem 266: 22785–22788

    Google Scholar 

  • — (1992) The structural genes of the nitric oxide reductase complex from Pseudomonas stutzeri are part of a 30-kilobase gene cluster for denitrification. J Bacteriol 174: 2394–2397

    Google Scholar 

  • Breton J, Berks BC, Reilly A, Thomson AJ, Ferguson SJ & Richardson DJ (1994) Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase. FEBS Lett 345: 76–80

    Google Scholar 

  • Broda E (1975) The evolution of the bioenergetic processes. Pergamon Press, Oxford

    Google Scholar 

  • Brudvig GW, Stevens TH & Chan SI (1980) Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 19: 5275–5285

    Google Scholar 

  • Camilli A & Mekalanos JJ (1995) Use of recombinase fusions to identify Vibrio cholerae genes induced during infection. Mol Microbiol 18: 671–683

    Google Scholar 

  • Carlson CA, Ferguson LP & Ingraham JL (1982) Properties of dissimilatory nitrate reductase purified from the denitrifier Pseudomonas aeruginosa. J Bacteriol 151: 162–171

    Google Scholar 

  • Carr GJ & Ferguson SJ (1990) The nitric-oxide reductase of Paracoccus denitrificans. Biochem J 269: 423–429

    Google Scholar 

  • Carter JP, Richardson DJ & Spiro S (1995) Isolation and characterisation of a strain of Pseudomonas putida that can express a periplasmic nitrate reductase. Arch Microbiol 163: 159–166

    Google Scholar 

  • Chan Y-K & Wheatcroft R (1993) Detection of a nitrous oxide reductase structural gene in Rhizobium meliloti strains and its location on the nod megaplasmid of JJ1c10 and SU47. J Bacteriol 175: 19–26

    Google Scholar 

  • Chen YJ & Rosazza JPN (1995) Purification and characterization of nitric oxide synthase (NOSNoc) from a Nocardia species. J Bacteriol 177: 5122–5128

    Google Scholar 

  • Claros MG & von Heijne G (1994) TopPred II: an improved software for membrane protein structure prediction. Comput Appl Biosci 10: 685–686

    Google Scholar 

  • Craske A & Ferguson SJ (1986) The respiratory nitrate reductase from Paracoccus denitrificans: molecular characterisation and kinetic properties. Eur J Biochem 158: 429–436

    Google Scholar 

  • de Boer APN, Reijnders WNM, Kuenen JG, Stouthamer AH & van Spanning RJM (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Leeuwenhoek 66: 111–127

    Google Scholar 

  • de Boer APN, Reijnders WNM & Stouthamer AH (1995) Sequencing and mutagenesis of a gene cluster encoding nitric oxide reductase from Paracoccus denitrificans. EMBL database, accession no. U28078

  • DeMoss JA (1977) Limited proteolysis of nitrate reductase purified from membranes of Escherichia coli. J Biol Chem 252: 1696–1701

    Google Scholar 

  • DeMoss JA, Fan TY & Scott RH (1981) Characterization of subunit structural alterations which occur during purification of nitrate reductase from Escherichia coli. Arch Biochem Biophys 206: 54–64

    Google Scholar 

  • Dennison C, Vijgenboom E, de Vries S, van der Oost J & Canters GW (1995) Introduction of a CuA site into the blue copper protein amicyanin from Thiobacillus versutus. FEBS Lett 365: 92–94

    Google Scholar 

  • Dolata MM, van Beeumen JJ, Ambler RP, Meyer TE & Cusanovich MA (1993) Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin. J Biol Chem 268: 14426–14431

    Google Scholar 

  • Dooley DM, Moog RS & Zumft WG (1987) Characterization of the copper site in Pseudomonas perfectomarina nitrous oxide reductase by resonance Raman spectroscopy. J Am Chem Soc 109: 6730–6735

    Google Scholar 

  • Dreusch A, Riester J, Kroneck PMH & Zumft WG (1996) Mutation of the conserved Cys165 outside the CuA domain destabilizes nitrous oxide reductase but maintains its catalytic activity: evidence for disulfide bridges and a putative disulfide isomerase gene. Eur J Biochem 237: 447–453

    Google Scholar 

  • Egami F (1973) A comment to the concept on the role of nitrate fermentation and nitrate respiration in an evolutionary pathway of energy metabolism. Z Allg Mikrobiol 13: 177–181

    Google Scholar 

  • Eisenmann E, Siedow A, Cramm R, Siddiqui RA & Friedrich B (1995) Chromosomally encoded nitrite reductase of Alcaligenes eutrophus requires a megaplasmid-borne gene region for catalytic activity. BIOspektrum 1995: 119

    Google Scholar 

  • Farrar JA, Thomson AJ, Cheesman MR, Dooley DM & Zumft WG (1991) A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri), evidence from optical, EPR and MCD spectroscopy. FEBS Lett 294: 11–15

    Google Scholar 

  • Farrar JA, Lappalainen P, Zumft WG, Saraste M & Thomson AJ (1995) Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans. Eur J Biochem 232: 294–303

    Google Scholar 

  • Felsenstein J (1993) PHYLIP — Phylogeny inference package, version 3.5c. Department of Genetics University of Washington, Seattle

    Google Scholar 

  • Fleischmann RD, et al. & Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512

    Google Scholar 

  • Frunzke K, Heiss B, Meyer O & Zumft WG (1993) Molybdopterin guanine dinucleotide is the organic moiety of the molybdenum cofactor in respiratory nitrate reductase from Pseudomonas stutzeri. FEMS Microbiol Lett 113: 241–245

    Google Scholar 

  • Fülöp V, Moir JWB, Ferguson SJ & Hajdu J (1995) The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd 1. Cell 81: 369–377

    Google Scholar 

  • Glockner AB & Zumft WG (1996) Sequence of a 9.7 kb internal fragment from the denitrification gene cluster of Pseudomonas stutzeri. BIOspectrum 1996: 70

    Google Scholar 

  • Godden JW, Turley S, Teller DC, Adman ET, Liu MY, Payne WJ & LeGall J (1991) The 2.3 Angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 253: 438–442

    Google Scholar 

  • Goretski J, Zafiriou OC & Hollocher TC (1990) Steady-state nitric oxide concentrations during denitrification. J Biol Chem 265: 11535–11538

    Google Scholar 

  • Grossmann JG, Abraham ZHL, Adman ET, Neu M, Eady RR, Smith BE & Hasnain SS (1993) X-ray scattering using synchrotron radiation shows nitrite reductase from Achromobacter xylosoxidans to be a trimer in solution. Biochemistry 32: 7360–7366

    Google Scholar 

  • Grove J, Tanapongpipat S, Thomas G, Griffiths L, Crooke H & Cole J (1996) Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol 19: 467–481

    Google Scholar 

  • Haltia T, Finel M, Harms N, Nakari T, Raitio M, Wikström M & Saraste M (1989) Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J 8: 3571–3579

    Google Scholar 

  • Haltia T, Puustinen A & Finel M (1988) The Paracoccus denitrificans cytochrome aa 3 has a third subunit. Eur J Biochem 172: 543–546

    Google Scholar 

  • Heiss B, Frunzke K & Zumft WG (1989) Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol 171: 3288–3297

    Google Scholar 

  • Hernandez D & Rowe JJ (1988) Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J Biol Chem 263: 7937–7939

    Google Scholar 

  • Hochstein LI & Tomlinson GA (1988) The enzymes associated with denitrification. Annu Rev Microbiol 42: 231–261

    Google Scholar 

  • Hoeren FU, Berks BC, Ferguson SJ & McCarthy JEG (1993) Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans: new and conserved structural and regulatory motifs. Eur J Biochem 218: 49–57

    Google Scholar 

  • Hole UH, Vollack K-U, Zumft WG, Eisenmann E, Siddiqui RA, Friedrich B & Kroneck PMH (1996) Characterization of the membrane-bound denitrification enzymes nitrite reductase (cytochrome cd 1) and copper-containing nitrous oxide reductase from Thiobacillus denitrificans. Arch Microbiol 165: 55–61

    Google Scholar 

  • Howes BD, Abraham ZHL, Lowe DJ, Bruser T, Eady RR & Smith BE (1994) EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the type 2 copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Biochemistry 33: 3171–3177

    Google Scholar 

  • Ishizuka M, Toraya T & Fukui S (1984) Purification, properties and limited proteolysis of nitrate reductase from Pseudomonas denitrificans. Biochim Biophys Acta 786: 133–143

    Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B & Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669

    Google Scholar 

  • Jin H, Thomann H, Coyle CL & Zumft WG (1989) Copper coordination in nitrous oxide reductase from Pseudomonas stutzeri. J Am Chem Soc 111: 4262–4269

    Google Scholar 

  • Jones AM & Hollocher TC (1993) Nitric oxide reductase of Achromobacter cycloclastes. Biochim Biophys Acta 1144: 359–366

    Google Scholar 

  • Jones AM, Hollocher TC & Knowles R (1992) Nitrous oxide reductase of Flexibacter canadensis: a unique membrane-bound enzyme. FEMS Microbiol Lett 92: 205–209

    Google Scholar 

  • Jüngst A & Zumft WG (1992) Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri. FEBS Lett 314: 308–314

    Google Scholar 

  • Jüngst A, Braun C & Zumft WG (1991a) Close linkage in Pseudomonas stutzeri of the structural genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification. Mol Gen Genet 225: 241–248

    Google Scholar 

  • Jüngst A, Wakabayashi S, Matsubara H & Zumft WG (1991b) The nirSTBM region coding for cytochrome cd 1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett 279: 205–209

    Google Scholar 

  • Kalkowski I & Conrad R (1991) Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. FEMS Microbiol Lett 82: 107–111

    Google Scholar 

  • Kastrau DHW, Heiss B, Kroneck PMH & Zumft WG (1994) Nitric oxide reductase from Pseudomonas stutzeri, a novel cytochrome bc complex: phospholipid requirement, electron paramagnetic resonance and redox properties. Eur J Biochem 222: 293–303

    Google Scholar 

  • Kawasaki S, Arai H, Igarashi Y & Kodama T (1995) Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d 1. Gene 167: 87–91

    Google Scholar 

  • Kelly M, Lappalainen P, Talbo G, Haltia T, van der Oost J & Saraste M (1993) Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center. J Biol Chem 268: 16781–16787

    Google Scholar 

  • Khoroshilova N, Beinert H & Kiley PJ (1995) Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci USA 92: 2499–2503

    Google Scholar 

  • Kobayashi M & Shoun H (1995) The copper-containing dissimilatory nitrite reductase involved in the denitrifying system of the fungus Fusarium oxysporum. J Biol Chem 270: 4146–4151

    Google Scholar 

  • Körner H & Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55: 1670–1676

    Google Scholar 

  • Kroneck PMH, Antholine WA, Riester J & Zumft WG (1988) The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II), Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett 242: 70–74

    Google Scholar 

  • — (1989) The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome c oxidase. FEBS Lett 248: 212–213

    Google Scholar 

  • Kukimoto M, Nishiyama M, Murphy MEP, Turley S, Adman ET, Horinouchi S & Beppu T (1994) X-ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atoms in nitrite reduction. Biochemistry 33: 5246–5252

    Google Scholar 

  • Kukimoto M, Nishiyama M, Ohnuki T, Turley S, Adman ET, Horinouchi S & Beppu T (1995) Identification of interaction site of pseudoazurin with its redox partner, copper-containing nitrite reductase from Alcaligenes faecalis S-6. Protein Engin 8: 153–158

    Google Scholar 

  • Li PM, Malmström BG & Chan SI (1989) The nature of CuA in cytochrome c oxidase. FEBS Lett 248: 210–211

    Google Scholar 

  • McEwan AG, Wetzstein HG, Meyer O, Jackson JB & Ferguson SJ (1987) The periplasmic nitrate reductase of Rhodobacter capsulatus; purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch Microbiol 147: 340–345

    Google Scholar 

  • Méjean V, Iobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M & Pascal M-C (1994) TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11: 1169–1179

    Google Scholar 

  • Michalski WP, Hein DH & Nicholas DJD (1986) Purification and characterization of nitrous oxide reductase from Rhodopseudomonas sphaeroides f.sp. denitrificans. Biochim Biophys Acta 872: 50–60

    Google Scholar 

  • Murphy MEP, Turley S, Kukimoto M, Nishiyama M, Horinouchi S, Sasaki H, Tanokura M & Adman ET (1995) Structure of Alcaligenes faecalis nitrite reductase and a copper site mutant, M150E, that contains zinc. Biochemistry 34: 12107–12117

    Google Scholar 

  • Nakahara K, Shoun H, Adachi S, Iizuka T & Shiro Y (1994) Crystallization and preliminary X-ray diffraction studies of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum. J Mol Biol 239: 158–159

    Google Scholar 

  • Neese F, Zumft WG, Antholine WE & Kroneck PMH (1996) The purple, mixed-valence CuA center in nitrous oxide reductase: EPR of the 63Cu-, 65Cu-, and 65Cu, 15N-histidine-enriched enzyme and a molecular orbital interpretation. J Am Chem Soc, in press

  • Noji S & Taniguchi S (1987) Molecular oxygen controls nitrate transport of Escherichia coli nitrate-respiring cells. J Biol Chem 262: 9441–9443

    Google Scholar 

  • Ohshima T, Sugiyama M, Uozumi N, Iijima S & Kobayashi T (1993) Cloning and sequencing of a gene encoding nitrite reductase from Paracoccus denitrificans and expression of the gene in Escherichia coli. J Ferm Bioeng 76: 82–88

    Google Scholar 

  • Palmedo G, Seither P, Körner H, Matthews JC, Burkhalter RS, Timkovich R & Zumft WG (1995) Resolution of the nirD locus for heme d 1 synthesis of cytochrome cd 1 (respiratory nitrite reductase) from Pseudomonas stutzeri. Eur J Biochem 232: 737–746

    Google Scholar 

  • Persson B & Argos P (1994) Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol 237: 182–192

    Google Scholar 

  • Pfenninger S, Antholine WE, Barr ME, Hyde JS, Kroneck PMH & Zumft WG (1995) Electron spin-lattice relaxation of the [Cu(1.5)...Cu(1.5)] dinuclear copper center in nitrous oxide reductase. Biophys J 69: 2761–2769

    Google Scholar 

  • Pollock WBR, Loutfi M, Bruschi M, Rapp-Giles BJ, Wall JD & Voordouw G (1991) Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome-c from Desulfovibrio vulgaris Hildenborough. J Bacteriol 173: 220–228

    Google Scholar 

  • Preisig O, Anthamatten D & Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 90: 3309–3313

    Google Scholar 

  • Raitio M, Jalli T & Saraste M (1987) Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. EMBO J 6: 2825–2833

    Google Scholar 

  • Raitio M, Pispa JM, Metso T & Saraste M (1990) Are there isoenzymes of cytochrome c oxidase in Paracoccus denitrificans? FEBS Lett 261: 431–435

    Google Scholar 

  • Remde A & Conrad R (1991) Metabolism of nitric oxide in soil and denitrifying bacteria. FEMS Microbiol Ecol 85: 81–93

    Google Scholar 

  • Reyes F, Roldan MD, Klipp W, Castillo F & Moreno-Vivian C (1996) Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol 19: 1307–1318

    Google Scholar 

  • Riester J, Zumft WG & Kroneck PMH (1989) Nitrous oxide reductase from Pseudomonas stutzeri, redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur J Biochem 178: 751–762

    Google Scholar 

  • Römermann D & Friedrich B (1985) Denitrification by Alcaligenes eutrophus is plasmid dependent. J Bacteriol 162: 852–854

    Google Scholar 

  • Saraste M & Castresana J (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett 341: 1–4

    Google Scholar 

  • Satoh T (1981) Soluble dissimilatory nitrate reductase containing cytochrome c from a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol 22: 443–452

    Google Scholar 

  • Sawada E & Satoh T (1980) Periplasmic location of dissimilatory nitrate and nitrite reductases in a denitrifying phototrophic bacterium Rhodopseudomonas sphaeroides forma sp. denitrificans. Plant Cell Physiol 21: 205–210

    Google Scholar 

  • Scott RA, Zumft WG, Coyle CL & Dooley DM (1989) Pseudomonas stutzeri N2O reductase contains CuA-type sites. Proc Natl Acad Sci USA 86: 4082–4086

    Google Scholar 

  • Sears HJ, Ferguson SJ, Richardson DJ & Spiro S (1993) The identification of a periplasmic nitrate reductase in Paracoccus denitrificans. FEMS Microbiol Lett 113: 107–112

    Google Scholar 

  • Sears HJ, Bennett B, Spiro S, Thomson AJ & Richardson DJ (1995) Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans. Biochem J 310: 311–314

    Google Scholar 

  • Shapleigh JP & Payne WJ (1985) Nitric oxide-dependent proton translocation in various denitrifiers. J Bacteriol 163: 837–840

    Google Scholar 

  • Shapleigh JP, Davies KJP & Payne WJ (1987) Detergent inhibition of nitric-oxide reductase activity. Biochim Biophys Acta 911: 334–340

    Google Scholar 

  • Shiro Y, Fujii M, Iizuka T, Adachi S, Tsukamoto K, Nakahara K & Shoun H (1995) Spectroscopic and kinetic studies on reaction of cytochrome P450nor with nitric oxide. Implication for its nitric oxide reduction mechanism. J Biol Chem 270: 1617–1623

    Google Scholar 

  • Shoun H & Tanimoto T (1991) Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem 266: 11078–11082

    Google Scholar 

  • Shoun H, Kim D-H, Uchiyama H & Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94: 277–281

    Google Scholar 

  • Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S & Friedrich B (1993) Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175: 5867–5876

    Google Scholar 

  • Sigwart C, Hemmerich P & Spence JT (1968) A binuclear mixed-valence copper acetate complex as a model for copper-copper interaction in enzymes. Inorg Chem 7: 2545–2548

    Google Scholar 

  • Silvestrini MC, Galeotti CL, Gervais M, Schinina E, Barra D, Bossa F & Brunori M (1989) Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett 254: 33–38

    Google Scholar 

  • Smith GB & Tiedje JM (1992) Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol 58: 376–384

    Google Scholar 

  • Smith TF & Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147: 195–197

    Google Scholar 

  • Teraguchi S & Hollocher TC (1989) Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes. J Biol Chem 264: 1972–1979

    Google Scholar 

  • Thompson JD, Higgins DG & Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    Google Scholar 

  • Tomura D, Obika K, Fukamizu A & Shoun H (1994) Nitric oxide reductase cytochrome P-450 gene, CYP 55, of the fungus Fusarium oxysporum containing a potential binding-site for FNR, the transcription factor involved in the regulation of anaerobic growth of Escherichia coli. J Biochem 116: 88–94

    Google Scholar 

  • Usuda K, Toritsuka N, Matsuo Y, Kim D-H & Shoun H (1995) Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl Environ Microbiol 61: 883–889

    Google Scholar 

  • van der Oost J, Lappalainen P, Musacchio A, Warne A, Lemieux L, Rumbley J, Gennis RB, Aasa R, Pascher T, Malmström BG & Saraste M (1992) Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. EMBO J 11: 3209–3217

    Google Scholar 

  • van der Oost J, de Boer APN, de Gier J-WL, Zumft WG, Stouthamer AH & van Spanning RJM (1994) The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett 121: 1–10

    Google Scholar 

  • van Spanning RJM, de Boer APN, Reijnders WNM, Spiro S, Westerhoff HV, Stouthamer AH & van der Oost J (1995) Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett 360: 151–154

    Google Scholar 

  • Viebrock A & Zumft WG (1988) Molecular cloning, heterologous expression, and primary structure of the structural gene for the copper enzyme nitrous oxide reductase from denitrifying Pseudomonas stutzeri. J Bacteriol 170: 4658–4668

    Google Scholar 

  • Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A & Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59: 2918–2926

    Google Scholar 

  • Vollack K-U, Römling U & Zumft WG (1996) Mapping of denitrification genes from P. aeruginosa by macrorestriction fragment analysis. BIOspectrum 1996: 70

    Google Scholar 

  • Walsh TA, Johnson MK, Greenwood C, Barber D, Springall JP & Thomson AJ (1979) Some magnetic properties of Pseudomonas cytochrome oxidase. Biochem J 177: 29–39

    Google Scholar 

  • Warnecke-Eberz U & Friedrich B (1993) Three nitrate reductase activities in Alcaligenes eutrophus. Arch Microbiol 159: 405–409

    Google Scholar 

  • Wilmanns M, Lappalainen P, Kelly M, Sauer-Eriksson E & Saraste M (1995) Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc Natl Acad Sci USA 92: 11955–11959

    Google Scholar 

  • Wu S, Sanchez-Moreno R & Rottenberg H (1995) Involvement of cytochrome c oxidase subunit III in energy coupling. Biochemistry 34: 16298–16305

    Google Scholar 

  • Ye RW, Arunakumari A, Averill BA & Tiedje JM (1992) Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J Bacteriol 174:2560–2564

    Google Scholar 

  • Ye RW, Averill BA & Tiedje JM (1994) Denitrification: production and consumption of nitric oxide. Appl Environ Microbiol 60: 1053–1058

    Google Scholar 

  • Yokoyama K, Hayashi NR, Arai H, Chung SY, Igarashi Y & Kodama T (1995) Genes encoding RubisCO in Pseudomonas hydrogenothermophila are followed by a novel cbbQ gene similar to nirQ of the denitrification gene cluster from Pseudomonas species. Gene 153: 75–79

    Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn, Vol 1 (pp 554–582). Springer Verlag, New York

    Google Scholar 

  • — (1993) The biological role of nitric oxide in bacteria. Arch Microbiol 160: 253–264

    Google Scholar 

  • Zumft WG & Dreusch A (1995) Dinitrogen evolution (denitrification) by nitrous oxide reductase, studied by site-directed mutagenesis: copper ligands, protein stability, and export competence. In: Tikhonovich IA, Provorov NA, Romanov VI & Newton WE (eds) Nitrogen fixation. fundamentals and applications (p 225). Kluwer Academic Publishers, Dordrecht, Boston, London

    Google Scholar 

  • Zumft WG & Kroneck PMH (1996) Metal-center assembly of the bacterial multicopper enzyme nitrous oxide reductase. Adv Inorg Biochem 11: 193–221

    Google Scholar 

  • Zumft WG & Matsubara T (1982) A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett 148: 107–112

    Google Scholar 

  • Zumft WG, Coyle CL & Frunzke K (1985a) The effect of oxygen on chromatographic behavior and properties of nitrous oxide reductase. FEBS Lett 183: 240–244

    Google Scholar 

  • Zumft WG, Döhler K & Körner H (1985b) Isolation and characterization of transposon Tn5-induced mutants of Pseudomonas perfectomarina defective in nitrous oxide respiration. J Bacteriol 163: 918–924

    Google Scholar 

  • Zumft WG, Dreusch A, Löchelt S, Cuypers H, Friedrich B & Schneider B (1992) Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues: implications for the CuA site of N2O reductase and cytochrome-c oxidase. Eur J Biochem 208: 31–40

    Google Scholar 

  • Zumft WG, Braun C & Cuypers H (1994) Nitric oxide reductase from Pseudomonas stutzeri: primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem 219: 481–490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zumft, W.G., Körner, H. Enzyme diversity and mosaic gene organization in denitrification. Antonie Van Leeuwenhoek 71, 43–58 (1997). https://doi.org/10.1023/A:1000112008026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000112008026

Navigation