Skip to main content
Log in

A Model for diffusion controlled bioavailability of crude oil components

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Crude oil is a complex mixture ofseveral different structural classes of compoundsincluding alkanes, aromatics, heterocyclic polarcompounds, and asphaltenes. The rate and extent ofmicrobial degradation of crude oil depends on theinteraction between the physical and biochemicalproperties of the biodegradable compounds and theirinteractions with the non-biodegradable fraction. Inthis study we have systematically altered theconcentration of non-biodegradable material in thecrude oil and analyzed its impact on transport of thebiodegradable components of crude oil to themicroorganisms. We have also developed a mathematicalmodel that explains and accounts for the dependence ofbiodegradation of crude oil through a putativebioavailability parameter. Experimental resultsindicate that as the asphaltene concentration in oilincreases, the maximum oxygen uptake in respirometersdecreases. The mathematically fitted bioavailabilityparameter of degradable components of oil alsodecreases as the asphaltene concentration increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45: 180–209

    Google Scholar 

  • Atlas RM & Bartha R (1973) Effect of some commercial oil herders, dispersants and bacterial inocula on biodegradation of oil in sea waters. In: Ahearns D.G. & Myers S.P. (Eds) Microbial degradation of oil pollutants, Louisiana State University publication-number LSU-SG-73-01, Baton Rouge, Louisiana

    Google Scholar 

  • Becher P (1965) Emulsion: Theory and Practice, 2nd edition. Reinhold, New York

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles, Academic Press, New York

    Google Scholar 

  • Coulalglou CA & Travlarides LL (1973) Drop size distribution and coalescence frequencies of liquid-liquid dispersions in flow vessels. AIChE J. 22: 289–297

    Google Scholar 

  • Crank J (1975) Mathematics of Diffusion, 2nd edition. Clarendon Press, Oxford (England)

    Google Scholar 

  • Cussler EL (1984) Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, New York (USA)

    Google Scholar 

  • Edwards DA, Luthy RG & Lui Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25: 127–133

    Google Scholar 

  • Haines JR, Wrenn BA, Holder EL, Strohmeier KL, Harrington RT & Venosa AD (1995) Measurement of hydrocarbon degrading microbial populations by a 96-well plate most-probable-number procedure. J. Ind. Microbiol. 16: 36–41

    Google Scholar 

  • Haines JR, Holder EL & Venosa AD (1997) Assessment of mixed microbial cultures for bioremediation product testing. Fourth In situ and on-site bioremediation symposium 4: 419–424

    Google Scholar 

  • Horowitz A, Gutnick D & Rosenberg E (1975) Sequential growth of bacteria on crude oil. Applied Microbiology 30:10–19

    Google Scholar 

  • Hunter RJ (1987) Foundations of Colloid Science, Volume 1, Clarendon Press, Oxford

    Google Scholar 

  • Kawashima H, Nakahara T, Oogaki M & Tabuchi T (1983) Extra-cellular production of a mannosylerthritol lipid by a mutant of Candida sp. from n-alkanes and triacyl glycerols. Journal of Fermentation Technology 61: 143–149

    Google Scholar 

  • Klee AJ (1993) A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods 18: 36–41

    Google Scholar 

  • Li ZY, Lang S, Wagner F, Witte L & Wray V (1984) Formation and identification of interfacial active glycolipids from resting microbial cells. App. and Environ. Microbiol. 48: 610–617

    Google Scholar 

  • Margaritis A, Zajic JE, Gerso DF (1979) Production and surface active properties of microbial surfactants. Biotechnol. and Bioeng. 21: 1151–1162

    Google Scholar 

  • Mulkins-Phillips GJ & Stewart JE (1974a) Effect of environmental parameters on bacterial degradation of Bunker C oil, crude oil, and hydrocarbons. App. Microbiol. 28: 915–922

    Google Scholar 

  • Mulkins-Phillips GJ & Stewart JE (1974b) Effect of four dispersants on biodegradation and growth of bacteria on crude oil. App. Microbiol. 28: 547–552

    Google Scholar 

  • Neufeld RJ & Zajic JE (1984) The surface activity of Acinetobacter calcoaceticus sp. 2CA2". Biotechnol. and Bioeng. 26: 1108–1113

    Google Scholar 

  • Packard TT (1971) The measurement of respiratory electron-transport activity in marine phytoplankton. J. Mar. Res. 29: 235–244

    Google Scholar 

  • Procedure NLIN (1987). SAS Release version 6 Edition, SAS Institute, Cary, NC, USA

    Google Scholar 

  • Reisfeld A, Rosenberg E, Gutnick D (1972) Microbial degradation of crude oil: Factors affecting the dispersion in sea water by mixed pure cultures. App. Microbiol. 24: 363–368

    Google Scholar 

  • Robichaux TJ & Myrick HN (1972) Chemical enhancement of the biodegradation of crude oil pollutants J. Petrol. Technol. 24: 16–20

    Google Scholar 

  • Rosenberg E, Legmann R, Kushamaro A, Taube R, Adler E & Ron EZ (1992) Petroleum bioremediation-A multiphase problem. Biodegradation 3: 337–350

    Google Scholar 

  • Salama IA, Koch GG & Tolley HD (1978) On the estimation of most probable number in a serial dilution technique. Commun. Stat. Theor. Methodol. A7: 1267–1282

    Google Scholar 

  • Schulz D, Passeri A, Schmidt M, Land S, Wagner F, Wray V & Gunkel G (1991) Marine biosurfactants I: Screening for biosurfactants among crude oil degrading marine microorganisms from the North sea. Z. Naturforsch 46 C: 197–203

    Google Scholar 

  • Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, & Holder E (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware bay. Environ. Sci. and Technol. 30: 1764–1775

    Google Scholar 

  • Volkering F, Breure AM, van Andel JG & Rulkens WH Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61: 1699–1705

  • Walker JD, Petrakis L & Colwell RR (1976) Comparison of biodegradability of crude and fuel oils. Can. J. of Microbiol. 22: 598–602

    Google Scholar 

  • Westlake DWS, Jobson A, Phillippe R & Cook FD (1974) Biodegradability and crude oil composition. Can. J. of Microbiol. 20: 915–928

    Google Scholar 

  • Wodzinsky RS & LaRocca D (1977) Bacterial growth kinetics on diphenylmethane and napthalene-heptamethlynonane. App. Environ. Microbiol. 33: 660–665

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uraizee, F.A., Venosa, A.D. & Suidan, M.T. A Model for diffusion controlled bioavailability of crude oil components. Biodegradation 8, 287–296 (1997). https://doi.org/10.1023/A:1008293024768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008293024768

Navigation