Skip to main content
Log in

Influence of chemically modified tetracyclines on proliferation, invasion and migration properties of MDA-MB-468 human breast cancer cells

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Chemically modified tetracyclines (CMTs) are promising anti-cancer agents. In this study, we found that CMT-3 and CMT-8 showed dose-dependent cytotoxicities in MDA-MB-468 human breast cancer cells. Moreover, both CMT-3 and CMT-8 significantly inhibited in vitro cell migration and invasion at non-cytotoxic concentrations. Anti-invasion and migration potentials of the CMTs were associated with an increased expression of E-cadherin/catenins (α, β and γ-catenin) and tumor suppressor BRCA1. In addition, CMT-3 and CMT-8 abolished or reduced spontaneous and HGF/SF-induced cell invasion and migration in U-373 MG human glioblastoma cells. Our current finding is the first demonstration that CMT-3 and CMT-8 can activate the function of invasion suppressor molecules associated with the suppression of breast cancer cell invasion and migration. Thus, clinical application of CMTs may provide potential benefit for suppression of breast cancer growth, invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroon AM, Dontji BHJ, Holtrop M et al. The mitochondrial genetic system as target for chemotherapy: Tetracycline as cytostatics. Cancer Lett 1984; 25: 33–40.

    PubMed  CAS  Google Scholar 

  2. Van den Bogert C, Dontje B, Kroon A. The antitumor effect of doxycycline on a T-cell leukemia in the rat. Leukemia Res 1985; 9: 617–623.

    Article  CAS  Google Scholar 

  3. Van den Bogert C, Dontje BHJ, Holtrop M et al. Arrest of the proliferation of renal and prostate carcinomas of human origin by inhibition of mitochondrial protein synthesis. Cancer Res 1986; 46: 3283–3289.

    PubMed  CAS  Google Scholar 

  4. Teicher BA, Holden SA, Liu CJ et al. Minocycline as a modulator of chemotherapy and hyperthermia in vitro and in vivo. Cancer Lett 1994; 82: 17–25.

    Article  PubMed  CAS  Google Scholar 

  5. Stomayor EA, Teicher BA, Schwartz GN et al. Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo. Cancer Chemother Pharmacol 1992; 30: 377–384.

    Article  Google Scholar 

  6. Fife RS, Sledge GW Jr, Proctor C et al. Doxycycline inhibits matrix metalloproteinase activity and enhances apoptosis in human prostate cancer cells. J Invest Med 1996; 44(A): 249 (Abstr).

    Google Scholar 

  7. Fife RS, Rougraff BT, Proctor C et al. Inhibition of proliferation and induction of apoptosis by doxycycline in cultured human osteosarcoma cells. J Lab Clin Med 1997; 130: 530–534.

    Article  PubMed  CAS  Google Scholar 

  8. Fife RS, Sledge GW Jr. Effects of doxycycline on cancer cells in vitro and in vivo. Adv Dent Res 1998; 12: 94–96.

  9. Fife RS, Sledge GW Jr. Effects of doxycycline on in vitro growth, migration, and gelatinase activity of breast carcinoma cells. J Lab Clin Med 1995; 125: 407–411.

    PubMed  CAS  Google Scholar 

  10. Fife RS, Sledge GW Jr, Roth BJ et al. Effects of doxycycline on human prostate cancer cells in vitro. Cancer Lett 1998; 127: 37–41.

    Article  PubMed  CAS  Google Scholar 

  11. Lokeshwar BL, Houston-Clark HL, Selzer MG et al. Potential application of a chemically modified non-antimicrobial tetracycline (CMT-3) against metastatic prostate cancer. Adv Dent Res 1998; 12: 97–102.

    PubMed  CAS  Google Scholar 

  12. Duivenvoorden WC, Hirte HW, Singh G. Use of tetracycline as an inhibitor of matrix metalloproteinase activity secreted by human bone-metastasizing cancer cells. Invasion Metastasis 1997; 17: 312–322.

    PubMed  CAS  Google Scholar 

  13. Golub LM, Lee HM, Ryan ME et al. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 1998; 12: 12–26.

    PubMed  CAS  Google Scholar 

  14. Masumori N, Tsukamoto T, Miyao N et al. Inhibitory effect of minocycline on in vitro invasion and experimental metastasis of mouse renal adenocarcinoma. J Urol 1994; 151: 1400–1404.

    PubMed  CAS  Google Scholar 

  15. Masumori N, Miyao N, Takahashi A et al. Minocycline inhibits in vitro invasion and experimental pulmonary metastasis of mouse renal adenocarcinoma. Adv Dent Res 1998; 12: 111–113.

    Article  PubMed  CAS  Google Scholar 

  16. Lokeshwar BL. MMP inhibition in prostate cancer. Ann N Y Acad Sci 1999; 878: 271–289.

    Article  PubMed  CAS  Google Scholar 

  17. Selzer MG, Zhu B, Block NL et al. CMT-3, a chemically modified tetracycline, inhibits bony metastases and delays the development of paraplegia in a rat model of prostate cancer. Ann N Y Acad Sci 1999; 878: 678–682.

    Article  PubMed  CAS  Google Scholar 

  18. Cakir Y, Hahn KA. Direct action by doxycycline against canine osteosarcoma cell proliferation and collagenase (MMP-1) activity in vitro. In Vivo 1999; 13: 327–331.

    PubMed  CAS  Google Scholar 

  19. Seftor RE, Seftor EA, De Larco JE et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin Exp Metastasis 1998; 16: 217–225.

    Article  PubMed  CAS  Google Scholar 

  20. Lukkonen A, Sorsa ST, Tervahartiala T et al. Down-regulation of trypsinogen-2 expression by chemically modified tetracyclines: Association with reduced cancer cell migration. Int J Cancer 2000; 86: 577–581.

    Article  PubMed  CAS  Google Scholar 

  21. Tamargo RJ, Bok RA, Brein H. Angiogenesis inhibition by minocycline. Cancer Res 1991; 51: 672–676.

    PubMed  CAS  Google Scholar 

  22. Fife RS, Sledge GW Jr, Sissons S et al. Effects of tetracyclines on angiogenesis in vitro. Cancer Lett 2000; 153: 75–78.

    Article  PubMed  CAS  Google Scholar 

  23. Golub LM, Greenwald RA, Ramamurthy NS et al. Tetracyclines inhibit connenctive tissue breakdown: New therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med 1991; 2: 297–322.

    PubMed  CAS  Google Scholar 

  24. Golub LM, Sorsa T, Lee HM. Doxycycline inhibits neutrophil (PMN)-type matrix metalloproteinases in human adult periodontitis gingiva. J Clin Periodontol 1995; 22: 100–109.

    Article  PubMed  CAS  Google Scholar 

  25. Cockett MI, Murphy G, Birch ML et al. Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp 1998; 63: 295–313.

    PubMed  CAS  Google Scholar 

  26. Nelson AR, Fingleton B, Rothenberg ML et al. Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol 2000; 18: 1135–1149.

    PubMed  CAS  Google Scholar 

  27. Fan S, Wang JA, Yuan RQ et al. BRCA1 as a potential human prostate tumor suppressor: modulation of proliferation, damage responses and expression of cell regulatory proteins. Oncogene 1998; 16: 3069–3082.

    Article  PubMed  CAS  Google Scholar 

  28. Meng Q, Qi M, Chen DZ et al. Suppression of breast cancer invasion and migration by indole-3-carbinol: Associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. J Mol Med 2000; 78: 155–165.

    Article  PubMed  CAS  Google Scholar 

  29. Kemler R. From cadherins to catenins: Cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993; 9: 317–321.

    Article  PubMed  CAS  Google Scholar 

  30. Bracke ME, Van Roy FM, Mareel MM. The E-cadherin/catenin complex in invasion and metastasis. Curr Top Microbiol Immunol 1996; 213: 123–161.

    PubMed  CAS  Google Scholar 

  31. Zschiesche W, Schonborn I, Behrens J et al. Expression of E-cadherin and catenins in invasive mammary carcinomas. Anticancer Res 1997; 17: 561–567.

    PubMed  CAS  Google Scholar 

  32. Bukholm IK, Nesland JM, Karesen R et al. E-cadherin and alpha-, beta-, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 1998; 185: 262–266.

    Article  PubMed  CAS  Google Scholar 

  33. Siitonen SM, Kononen JT, Helin HJ et al. Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer. Am J Clin Pathol 1996; 105: 394–402.

    PubMed  CAS  Google Scholar 

  34. Berx G, Cleton-Jansen AM, Nollet F et al. E-cadherin is a tumour/ invasion suppressor gene mutated in human lobular breast cancers. EMBO J 1995; 14: 6107–6115.

    PubMed  CAS  Google Scholar 

  35. Berx G, Cleton-Jansen AM, Strumane K et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 1996; 13: 1919–1925.

    PubMed  CAS  Google Scholar 

  36. De Leeuw WJ, Berx G, Vos CB et al. Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol 1997; 183: 404–411.

    Article  PubMed  CAS  Google Scholar 

  37. Hunt NC, Douglas-Jones AG, Jasani B et al. Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas. Virchows Arch 1997; 430: 285–289.

    Article  PubMed  CAS  Google Scholar 

  38. Hiraguri S, Godfrey T, Nakamura H et al. Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Res 1998; 58: 1972–1977.

    PubMed  CAS  Google Scholar 

  39. Charpin C, Garcia S, Bonnier P et al. Reduced E-cadherin immunohistochemical expression in node-negative breast carcinomas correlates with 10-year survival. Am J Clin Pathol 1998; 109: 431–838.

    PubMed  CAS  Google Scholar 

  40. Handschuh G, Candidus S, Luber B et al. Tumour-associated Ecadherin mutations alter cellular morphology, decrease cellular adhesion and increase cellular motility. Oncogene 1999; 18: 4301–4312.

    Article  PubMed  CAS  Google Scholar 

  41. Mbalaviele G, Dunstan CR, Sasaki A et al. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res 1996; 56: 4063–4070.

    PubMed  CAS  Google Scholar 

  42. Bracke ME, Charlier C, Bruyneel EA et al. Tamoxifen restores the E-cadherin function in human breast cancer MCF-7/6 cells and suppresses their invasive phenotype. Cancer Res 1994; 54: 4607–4609.

    PubMed  CAS  Google Scholar 

  43. Cos S, Fernandez R, Guezmes A et al. Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res 1998; 58: 4383–4390.

    PubMed  CAS  Google Scholar 

  44. Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71.

    PubMed  CAS  Google Scholar 

  45. Thompson ME, Jensen RA, Obermiller PS et al. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 1995; 9: 444–450.

    Article  PubMed  CAS  Google Scholar 

  46. Rio PG, Pernin D, Bay JO et al. Loss of heterozygosity of BRCA1, BRCA2 and ATMgenes in sporadic invasive ductal breast carcinoma. Int J Oncol 1998;13: 849–853.

    PubMed  CAS  Google Scholar 

  47. Rio PG, Maurizis JC, Peffault de Latour M et al. Quantification of BRCA1 protein in sporadic breast carcinoma with or without loss of heterozygosity of the BRCA1 gene. Int J Cancer 1999; 80: 823–826.

    Article  PubMed  CAS  Google Scholar 

  48. Taylor J, Lymboura M, Pace PE et al. An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int J Cancer 1998; 79: 334–342.

    Article  PubMed  CAS  Google Scholar 

  49. Silva JM, Gonzalez R, Provencio M et al. Loss of heterozygosity in BRCA1 and BRCA2 markers and high-grade malignancy in breast cancer. Breast Cancer Res Treat 1999; 53: 9–17.

    Article  PubMed  CAS  Google Scholar 

  50. Seery LT, Knowlden JM, Gee JM et al. BRCA1 expression levels predict distant metastasis of sporadic breast cancers. Int J Cancer 1999; 84: 258–262.

    Article  PubMed  CAS  Google Scholar 

  51. Wilson CA, Ramos L, Villasenor MR et al. Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet 1999; 21: 236–240.

    Article  PubMed  CAS  Google Scholar 

  52. Xu X, Wagner KU, Larson D et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 1999; 22: 37–43.

    Article  PubMed  CAS  Google Scholar 

  53. Jeffers M, Rong S, Woude GF. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med 1996; 74: 505–513.

    Article  PubMed  CAS  Google Scholar 

  54. Vande Woude GF, Jeffers M, Cortner J etval. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found Symp 1997; 212: 119–130

    PubMed  CAS  Google Scholar 

  55. Rosen E, Lamszus K, Laterra J et al. Scatter factor as a tumor angiogenesis factor. In Rubanyi GM (ed): Angiogenesis in Health and Disease: Basic Mechanisms and Clinical Application. New York: Marcel Dekker 1999; 145–56.

    Google Scholar 

  56. Hamasuna R, Kataoka H, Moriyama T et al. Regulation of matrix metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying up-regulation of membrane type-1 MMP. Int J Cancer 1999; 82: 274–281.

    Article  PubMed  CAS  Google Scholar 

  57. Horie S, Aruga S, Kawamata H et al. Biological role of HGF/MET pathway in renal cell carcinoma. J Urol 1999;161: 990–997.

    Article  PubMed  CAS  Google Scholar 

  58. Kemler R. From cadherins to catenins: Cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993; 9: 317–321.

    Article  PubMed  CAS  Google Scholar 

  59. Bowers DC, Fan S, Williams JA et al. Hepatocyte growth factor activates the AKT pathway and protects against cytotoxic death in glioma cells. Cancer Res 2000; in press.

  60. Rifkin BR, Vernillo AT, Golub LM. Blocking periodontal disease progression by inhibiting tissue-destructive enzymes: A potential therapeutic role for tetracyclines and their chemicallly modified analogs. Am Acad Periodontol 1993; 64: 819–827.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Xu, J., Goldberg, I.D. et al. Influence of chemically modified tetracyclines on proliferation, invasion and migration properties of MDA-MB-468 human breast cancer cells. Clin Exp Metastasis 18, 139–146 (2000). https://doi.org/10.1023/A:1006732424102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006732424102

Navigation