Skip to main content
Log in

In vitro effects of cholesteryl butyrate solid lipid nanospheres as a butyric acid pro-drug on melanoma cells: Evaluation of antiproliferative activity and apoptosis induction

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Literature data show that butyric acid derivatives bear a dose-dependent differentiative anti-proliferative activity on cancer cell lines and that apoptosis induction may play a major role. Although it was recently shown that solid lipid nanospheres (SLNs) are a suitable tool for several in vivo drug administration routes, there is little available information on melanoma cell lines. This study was aimed at evaluating the anti-proliferative and apoptotic in vitro effects of cholesteryl butyrate (chol-but) SLNs on melanoma cells. Increasing concentrations of chol-but SLNs were used to test two melanoma cell lines. Both cell lines were treated with Na-butyrate (Na-but) and chol-but SLNs for viability. Those tested with chol-but SLNs were more effective than Na-butirate (3 to 72 h). The apoptotic effects of chol-but SLNs were evaluated between 3 and 72 h by annexin-V (ANX-V)/propidium iodide (PI) staining and the antiproliferative effect by PI staining. Apoptosis anti-proliferative-regulatory proteins as bcl-2, Fas/APO1 (CD95) and PCNA (PC10) were also investigated. Flow cytometric analyses evidenced a G0/1-S transition block and a `sub-G0/1' apoptotic peak from 0.5 to 1.0 mM butyric acid. In ANX-V/PI flow cytometric staining, a dose- and time-dependent increase in the apoptotic cell percentage (ANX-V+) coupled with a down-regulation of PC10 and bcl-2 and a parallel up-regulation of Fas/APO1 (CD95) were found in both lines started after 3 to 24 h of chol-but SLNs treatment. Results show that chol-but SLNs exerts a dose/time-dependent effect in melanoma cell apoptosis induction between 3 and 24 h and a dose but not time-dependent effect after 24 h of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cummings JH. Shorth-chain fatty acids in the human colon. Gut 1981; 22: 763–79.

    PubMed  CAS  Google Scholar 

  2. Kruhn J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 1982; 42: 65–82.

    Google Scholar 

  3. Planchon P, Raux H, Magnien V et al. New stable butyrate derivatives alter proliferation and differentiation in human mammary cells. Int J Cancer 1991; 48: 443–9.

    PubMed  CAS  Google Scholar 

  4. Gamet L, Daviaud D, Denis-Pouxviel C et al. Effects of short-chain fatty acids on growth and differentiation in the human colon-cancer cell line HT29. Int J Cancer 1992; 52 (2): 286–9.

    PubMed  CAS  Google Scholar 

  5. Hague A, Manning A, Hanlon KA et al. Sodium butyrate induces apoptosis in human colonic tumor cell lines in a p53-independent pathway: Implications for the possible role of dietary fiber in the prevention of large-bowel cancer. Int J Cancer 1993; 55: 498–505.

    PubMed  CAS  Google Scholar 

  6. Scheppach W, Bartram HP, Richter F. Role of short-chain fatty acid in the prevention of colorectal cancer. Eur J Cancer 1995; 31A (7/8): 1077–80.

    Article  PubMed  CAS  Google Scholar 

  7. Saito H, Kagawa T, Miyaguchi S et al. Differentiating effect of sodium butyrate on human hepatoma cell lines PCL/PRF/5, HCC-T. Int J Cancer 1991; 48: 291–6.

    PubMed  CAS  Google Scholar 

  8. Siu LL, Von Hoff DD, Rephaeli A et al. Activity of pivaloyloxymethyl butyrate, a novel anticancer agent, on primary human tumor colony-forming unit. Invest New Drugs 1988; 16(2): 113–9.

    Article  Google Scholar 

  9. Nudelman A, Ruse M, Aviram A et al. Novel anticancer prodrugs of butyric acid. 2. J Med Chem 1992; 35(4): 687–94.

    Article  PubMed  CAS  Google Scholar 

  10. Vecchia MG, Carnelos Filho M, Fellipe CR et al. Acetate and propionate potentiate the antiproliferative effect of butyrate on RBL-2H3 growth. Gen Pharmacol 1997; 29(5): 725–8.

    PubMed  CAS  Google Scholar 

  11. Giermasz A, Nowis D, Jalili A et al. Antitumor activity of tributyrin in murine melanoma model. Cancer Lett 2001; 164(2): 143–8.

    Article  PubMed  CAS  Google Scholar 

  12. Boffa LC, Vidali G, Mann RS et al. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem 1978; 253(10): 3364–6.

    PubMed  CAS  Google Scholar 

  13. Candido EPM, Reeves R, Davie RD. Sodium butyrate inhibits histone deacetylation in culture cell. Cell 1978; 14: 105–8.

    Article  PubMed  CAS  Google Scholar 

  14. Calabresse C, Venturini L, Ronco G et al. Butyric acid and its monosaccharide ester induce apoptosis in the HL60 cell line. Biochem Biophys Res Comm 1993; 195(1): 31–8.

    Article  PubMed  CAS  Google Scholar 

  15. Williams GT, Smith CA. Molecular regulation of apoptosis: Genetic controls on cell death. Cell 1993; 74: 777–9.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–62.

    PubMed  CAS  Google Scholar 

  17. Krupitza G, Harant H, Dittrich E et al. Sodium butyrate inhibits c-myc splicing and interferes with signal trasduction in ovarian carcinoma cells. Carcinogenesis 1995; 16: 1199–205.

    PubMed  CAS  Google Scholar 

  18. Velasquez OC, Zhou D, Saito RW et al. In vivo crypt surface hiperproliferation is decreased by butyrate and increased by deoxycolate in normal rat colon: Associated in vivo effects on c-fos and c-jun expression. J Parenteral Enteral Nutr 1996; 20: 243–50.

    Article  Google Scholar 

  19. Mandal M, Kumar R. Bcl-2 expression regulates sodium butyrate induced apoptosis in human MCF-7 breast cancer cells. Cell Growth Diff 1996; 7: 311–8.

    PubMed  CAS  Google Scholar 

  20. Janson W, Brandner G, Siegel J. Butyrate modulates DANN-damage-induced p53 response by induction of p-53 independent differentiation and apoptosis. Oncogene 1997; 15: 1395–406.

    Article  PubMed  CAS  Google Scholar 

  21. Fan YY, Zhang J, Barhoumi R et al. Antagonism of CD95 signaling blocks butyrate induction of apoptosis in young adult mouse colonic cells Am J Physiol 1999; 277 (2Pt1): C310–9.

    PubMed  CAS  Google Scholar 

  22. Bonnotte B, Favre N, Reveneau S et al. Cancer cell sensitization to fas-mediated apoptosis by sodium butyrate. Cell Death Differ 1998; 5(6): 480–7.

    Article  PubMed  CAS  Google Scholar 

  23. Miller AA, Kurschel E, Osieka R et al. Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Clin Oncol 1987; 23(9): 1283–7.

    Article  CAS  Google Scholar 

  24. Novogrodsky A, Dvir A, Ravid A et al. Effect of polar organic compounds on leukemic cells. Butyrate-induced partial remission of acute myelogenous leukaemia in a child. Cancer 1983; 51(1): 9–14.

    Article  PubMed  CAS  Google Scholar 

  25. Miglietta A, Cavalli R, Bocca C et al. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm 2000; 210: 61–7.

    Article  PubMed  CAS  Google Scholar 

  26. Fundarò A, Cavalli R, Bargoni A et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carryng doxorubicin: Pharmacokinetics and tissue distribution after i.v. admistration to rats. Pharmacol Res 2000; 42: 337–43.

    Article  PubMed  CAS  Google Scholar 

  27. Cavalli R, Zara GP, Caputo O et al. Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats-Part I-A pharmacokinetic study. Pharmacol Res 2000; 42: 541–5.

    Article  PubMed  CAS  Google Scholar 

  28. Bargoni A, Cavalli R, Caputo O et al. Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharmacol Res 1998; 15(5): 745–50.

    Article  CAS  Google Scholar 

  29. Podio V, Zara GP, Carazzone M et al. Biodistribution of stealth and non-stealth solid lipid nanospheres after intravenous administration to rats. J Pharm Pharmacol 2000; 52: 1057–63.

    Article  PubMed  CAS  Google Scholar 

  30. Pellizzaro C, Coradini D, Morel S et al. Cholesteryl butyrate in solid lipid nanospheres as an alternative approach for butyric acid delivery. Anticancer Res 1999; 19(5B): 3921–5.

    PubMed  CAS  Google Scholar 

  31. Gasco MR. Solid lipid nanospheres from warm microemulsion. Pharm Technology Europe 1997; 9: 52–8.

    CAS  Google Scholar 

  32. Duncan IW, Culbreth PH, Burtis CA. Determination of free, total, and esterified cholesterol by high-performance liquid chromatography. J Chromatogr 1979; 162: 281–92.

    PubMed  CAS  Google Scholar 

  33. Van Engeland M, Nieland LJW, Ramaekers FCS et al. Annexin V affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998; 31: 1–9.

    Article  PubMed  CAS  Google Scholar 

  34. Koopman By G, Reutelingsperger CPM, Kuijten GAM et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84(5): 1415–20.

    Google Scholar 

  35. Pepper C, Thomas A, Tucker H et al. Flow cytometric assessment of three different methods for the measurement of in vitro apoptosis. Leuk Res 1998; 22: 439–44.

    Article  PubMed  CAS  Google Scholar 

  36. Van Engeland M, Ramaekers FCS, Schutte B et al. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 1996; 24: 131–9.

    Article  PubMed  CAS  Google Scholar 

  37. Nicoletti I, Migliorati G, Pagliacci MC et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271–9.

    Article  PubMed  CAS  Google Scholar 

  38. Viale M, Melioli G, Pasquetti W et al. Modifications of cell cycle induced by DPR, a new platinum-triamine complex containing procaine. Int J Oncol 1994; 4: 1047–51.

    CAS  Google Scholar 

  39. Langdon SP, Hawkes MM, Hay FG et al. Effect of sodium butyrate and other differentiation inducers on poorly differentiated human ovarian adenocarcinoma cell lines. Cancer Res 1988; 48(21): 6161–5.

    PubMed  CAS  Google Scholar 

  40. Hung WC, Chuang LY. Sodium butyrate enhances STAT 1 expression in PLC/PRF/5 hepatoma cells and augments their responsiveness to interferon-alpha. Br J Cancer 1999; 80(5-6): 705–10.

    Article  PubMed  CAS  Google Scholar 

  41. Wu JT, Archer SY, Hinnebusch B et al. Transient vs. prolonged histone hyperacetylation: Effects on colon cancer cell growth, differentiation, and apoptosis Am J Physiol Gastrointest Liver Physiol 2001; 280(3): G482–90.

    PubMed  CAS  Google Scholar 

  42. Tsubaki J, Choi WK, Ingermann AR Effects of sodium butyrate on expression of members of the IGF-binding protein superfamily in human mammary epithelial cells. J Endocrinol 2001; 169(1): 97–110.

    Article  PubMed  CAS  Google Scholar 

  43. Davis T, Kennedy C, Chiew YE et al. Histone deacetylase inhibitors decrease proliferation and modulate cell cycle gene expression in normal mammary epithelial cells. Clin Cancer Res 2000; 6(11): 4334–42.

    PubMed  CAS  Google Scholar 

  44. Sowa Y, Sakai T. Butyrate as a model for 'gene-regulating chemoprevention and chemotherapy'. Biofactors 2000; 12(1-4): 283–7 (Review).

    PubMed  CAS  Google Scholar 

  45. Pellizzaro C, Coradini D, Daniotti A et al. Modulation of cell cycle-related protein expression by sodium butyrate in human non-small cell lung cancer cell lines. Int J Cancer 2001; 91(5): 654–7.

    Article  PubMed  CAS  Google Scholar 

  46. Mentzer SJ, Fingeroth J, Reilly JJ et al. Arginine butyrate-induced susceptibility to ganciclovir in an Epstein-Barr virus-associated lymphoma. Blood Cells Mol Dis 1998; 24(2): 114–23.

    Article  PubMed  CAS  Google Scholar 

  47. Sher GD, Ginder GD, Little J et al. Extended therapy with intravenous arginine butyrate in patients with beta-hemoglobinopathies. N Engl J Med 1995; 332(24): 1606–10.

    Article  PubMed  CAS  Google Scholar 

  48. Perrine SP, Ginder GD, Faller DV et al. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med 1993; 328(2): 81–6.

    Article  PubMed  CAS  Google Scholar 

  49. Gaschott T, Steinhilber D, Milovic V et al. Tributyrin, a stable and rapidly absorbed prodrug of butyric acid, enhances antiproliferative effects of dihydroxycholecalciferol in human colon cancer cells. J Nutr 2001; 131(6): 1839–4

    PubMed  CAS  Google Scholar 

  50. Coradini D, Pellizzaro C, Miglierini G et al. Hyaluronic acid as drug delivery for sodium butyrate: Improvement of the anti-proliferative activity on a breast-cancer cell line. Int J Cancer 1999; 81(3): 411–6.

    Article  PubMed  CAS  Google Scholar 

  51. Nudelman A, Gnizi E, Katz Y et al. Prodrugs of butyric acid. Novel derivatives possessing increased aqueous solubility and potential for treating cancer and blood diseases. Eur J Med Chem 2001; 36(1): 63–74.

    Article  PubMed  CAS  Google Scholar 

  52. Nudelman A, Rephaeli A. Novel mutual prodrug of retinoic and butyric acids with enhanced anticancer activity. J Med Chem 2000; 43(15): 2962–6.

    Article  PubMed  CAS  Google Scholar 

  53. Cavalli R, Zara GP, Caputo O et al. Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part I-a pharmacokinetic study. Pharmacol Res 2000; 42(6): 541–5.

    Article  PubMed  CAS  Google Scholar 

  54. Xia Z, Wiebe LI, Miller GG et al. Synthesis and biological evaluation of butanoate, retinoate, and bis(2,2,2-trichloroethyl)phosphate derivatives of 5-fluoro-2'-deoxyuridine and 2',5-difluoro-2'-deoxyuridine as potential dual action anticancer prodrugs. Arch Pharm (Weinheim) 1999; 332(8): 286–94 (Review).

    Article  CAS  Google Scholar 

  55. Garbe C. Chemotherapy and chemoimmunotherapy in disseminated malignant melanoma. Melanoma Res 1993; 3(4): 291–9 (Review).

    PubMed  CAS  Google Scholar 

  56. Hara I, Miyake H, Hara S et al. Sodium butyrate induces apoptosis in human renal cell carcinoma cells and synergistically enhances their sensitivity to anti-Fas-mediated cytotoxicity. Int J Oncol 2000; 17(6): 1213–8.

    PubMed  CAS  Google Scholar 

  57. Madigan MC, Chaudhri G, Penfold PL et al. Sodium butyrate modulates p53 and Bcl-2 expression in human retinoblastoma cell lines. Oncol Res 1999; 11(7): 331–7.

    PubMed  CAS  Google Scholar 

  58. Siavoshian S, Segain JP, Kornprobst M et al. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: Induction of cyclin D3 and p21 expression. Gut 2000; 46(4): 507–14.

    Article  PubMed  CAS  Google Scholar 

  59. Ogryzko VV, Hirai TH, Russanova VR et al. Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 1996; 16(9): 5210–8.

    PubMed  CAS  Google Scholar 

  60. Coradini D, Pellizzaro C, Marimpietri D et al. Sodium butyrate modulates cell cycle-related proteins in HT29 human colonic adenocarcinoma cells. Cell Prolif 2000; 33(3): 139–46.

    Article  PubMed  CAS  Google Scholar 

  61. Lallemand F, Courilleau D, Buquet-Fagot C et al. J. Sodium butyrate induces G2 arrest in the human breast cancer cells MDA-MB-231 and renders them competent for DNA rereplication. Exp Cell Res 1999; 247(2): 432.

    Article  PubMed  CAS  Google Scholar 

  62. El-Deiry WS, Harper JW, O'Conner PM et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54: 1169–74.

    PubMed  CAS  Google Scholar 

  63. Robertson MJ, Manley TJ, Pichert G et al. Functional consequences of APO-1/Fas (CD95) antigen expression by normal and neoplastic hematopoietic cells. Leuk Lymph 1995; 17: 51–61.

    CAS  Google Scholar 

  64. O'Reilly LA, Huang DCS, Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 1996; 15: 6979–90.

    PubMed  Google Scholar 

  65. Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: Regulator of cell death. Blood 1992; 80: 879–88.

    PubMed  CAS  Google Scholar 

  66. Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–56.

    PubMed  CAS  Google Scholar 

  67. Avivi-Green C, Polak-Charcon S, Madar Z et al. Apoptosis cascade proteins are regulated in vivo by high intracolonic butyrate concentration: Correlation with colon cancer inhibition. Oncol Res 2000; 12(2): 83–95.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salomone, B., Ponti, R., Gasco, M. et al. In vitro effects of cholesteryl butyrate solid lipid nanospheres as a butyric acid pro-drug on melanoma cells: Evaluation of antiproliferative activity and apoptosis induction. Clin Exp Metastasis 18, 663–673 (2000). https://doi.org/10.1023/A:1013186331662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013186331662

Navigation