Skip to main content
Log in

The redox mechanism of the chelate-catalysed oxygen cathode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electro-reduction of oxygen is effectively catalysed by metal chelates of the N4-type. The mechanism of this process has been found to be a modified ‘redox catalysis’. O2 molecules and the products of their reaction, at least up to H2O2, remain strongly co-ordinated to the central metal ion of the chelates XMeII. The potential-determining step, which regenerates the reduced form, is the following: (XMeIII...O2H)++H++ 2e→XMeII+H2O2.

H2O2 is further decomposed via the catalase action of the electrocatalyst. The mechanism is confirmed by experimental results with iron phthalocyanine (FePc) and cobalt-dibenzotetraazaannulene (CoTAA) as a O2-slurry electrode at various O2 pressures. The latter shows anodic reaction-limited currents, which seem to involve also oxygen-containing intermediates. The implication of the presented mechanism in regard to other electrochemical processes is discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jasinski,Nature 201 (1964) 1212 andJ. Electrochem. Soc. 112, (1965) 526.

    Google Scholar 

  2. H. Jahnke,Ber. Bunsenges. physik. Chem. 72 (1968) 1053; H. Jahnke and M. Schönborn,III. Journées Int. d'Etude des Piles à Combustible, Compt. red. Bruxelles (1969) 60.

    Google Scholar 

  3. F. Beck, W. Dammert, J. Heiss, H. Hiller and R. Polster,Z. Naturforsch. 28a (1973) 1009.

    Google Scholar 

  4. F. Beck,Ber. Bunsenges. physik. Chem. 77 (1973) 355.

    Google Scholar 

  5. H. Alt, H. Binder, W. Lindner and G. Sandstede,J. Electroanal Chem. 31 (1971) 19.

    Google Scholar 

  6. H. Alt, H. Binder and G. Sandstede,J. Catal. 28 (1973) 8.

    Google Scholar 

  7. H. Jahnke, M. Schönborn and G. Zimmermann,Topics Current Chem. 61 (1976) 133.

    Google Scholar 

  8. M. Savy, P. Andro, C. Bernard and G. Magner,Electrochim. Acta 18 (1973) 191.

    Google Scholar 

  9. J. P. Counter, P. Lenfant and A. K. Vijh,J. Catal. 29 (1973) 8.

    Google Scholar 

  10. F. Haber,Z. anorg. Chem. 51 (1906) 356.

    Google Scholar 

  11. J. P. Hoare, ‘The Electrochemistry of Oxygen’, Interscience, New York (1968).

    Google Scholar 

  12. V. N. Bagotskii, L. N. Nekrassow and N. A. Shumilowa,Russ. Chem. Rev. 34, (1965) 717.

    Google Scholar 

  13. H. Hiller, P. Dimroth and H. Pfitzner,Liebgs Ann. Chem. 717 (1968) 137.

    Google Scholar 

  14. J. Manassen and A. Bar-Ilan,J. Catalysis 17 (1970) 86.

    Google Scholar 

  15. J. P. Randin,Electrochim. Acta 19 (1974) 83.

    Google Scholar 

  16. W. Beyer and F. v. Sturm,Angew. Chem. 84 (1972) 154.

    Google Scholar 

  17. Chr. Kretschmar and K. Wiesener,Z. phys. Chem. (Leipzig)257 (1976) 39.

    Google Scholar 

  18. D. I. Sawyer and L. V. Interrante,J. Electroanal. Chem. 2 (1961) 310

    Google Scholar 

  19. D. I. Sawyer and R. J. Day,Electrochim. Acta 8 (1963) 589.

    Google Scholar 

  20. M. W. Breiter, ‘Electrochemical Processes in Fuel Cells’, Springer, Heidelberg (1969).

    Google Scholar 

  21. H.A. Cook,J. Chem. Soc. (Lond.)1938 (1974) 1761.

    Google Scholar 

  22. M. M. Baizer (Ed.) ‘Organic Electrochemistry’, M. Dekker, New York (1973).

    Google Scholar 

  23. R. Brdička and K. Wiesener,Naturwiss. 31 (1943) 247 andColl. Czech. Chem. Comm. 12 (1947) 39.

    Google Scholar 

  24. J. Koutečky, R. Brdička and V. Hanus,Coll. Czech. Chem. Comm. 18 (1953) 611.

    Google Scholar 

  25. I. M. Kolthoff and E. P. Parry,J. Amer. Chem. Soc. 73 (1951) 3718.

    Google Scholar 

  26. H. Gerischer and J. Gobrecht,Ber. Bunsenges. physik. Chem. 80 (1976) 327.

    Google Scholar 

  27. F. BeckJ. Electroanal. Chem. (to be published).

  28. D. Vonderschmitt, K. Bernauer and S. Fallab,Helv. Chim. Acta 48 (1965) 951

    Google Scholar 

  29. H. Kropf,Liebigs Ann. Chem 637 (1960) 73.

    Google Scholar 

  30. E. Willihnganz,J. Electrochem. Soc. 100 (1953) 527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, F. The redox mechanism of the chelate-catalysed oxygen cathode. J Appl Electrochem 7, 239–245 (1977). https://doi.org/10.1007/BF00618991

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618991

Keywords

Navigation