Skip to main content
Log in

The role of electrode structure and surface texture in the performance of gas evolving electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The literature on gas-evolving electrodes is reviewed. Cell voltage measurements are reported for an undivided cell in NaOH at 70° C in which the cathode was mild steel plate, mild steel mesh or composites of both these materials. The anode was Ni-plated mild steel sheet or mesh. Variation in the structure of one electrode, leaving the other unchanged allowed changes in overvoltage to be measured. It is shown that substantial voltage reductions can be obtained using multiplex electrode structures and that these are mainly explicable in terms of specific surface areas. Sheet electrodes are seen to be more efficient than mesh ones on this basis however. It is shown that sheet electrodes with very high specific surface areas show significantly higher overvoltages than electrodes of low specific area and this surprising result is interpreted in terms of bubble entrapment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Kuhn,Chem. Processing July (1974) 9.

  2. Idem., ibid. August (1974) 5.

  3. I. Rousar, V. Cezner, J. Nejepsova, M. M. Jacksić, M. Spasojević and B. Z. Nikolić,J. Appl. Electrochem. 7 (1977) 427.

    Google Scholar 

  4. F. Hine,J. Electrochem. Soc. 122 (1975) 1185.

    Google Scholar 

  5. M. Hayes, A. T. Kuhn and W. Paterfield,J. Power Sources 2 (1977) 121.

    Google Scholar 

  6. F. Hine,ECS Meeting Seattle (1978) Abstract 459.

  7. Z. Nagy,J. Appl. Electrochem. 6 (1976) 171.

    Google Scholar 

  8. A. T. Kuhn,Chem. Ind. 4 July (1978) 447.

  9. French Patent 1530 541 (to Hooker Corp).

  10. US Patent 3871 988 (to Hooker Corp).

  11. German Offen Patent 2430 384 (to Hooker Corp).

  12. German Offen Patent 2353 583 (to Solvay).

  13. German Offen Patent 2704 213.

  14. Swiss Patent 480 870.

  15. German Offen Patent 2618410.

  16. German Offen Patent 2455 222.

  17. German Offen Patent 2454 827.

  18. German Offen Patent 2704 213.

  19. Canadian Patent 910 847.

  20. British Patent 1313 441.

  21. J. Mueller,Chem. Ing. Tech. 49 (1977) 326.

    Google Scholar 

  22. V. E. Sosenkhin,Soviet Electrochem. 14 (1978) 976.

    Google Scholar 

  23. A. A. Chernenko and G. Y. Chirkov,ibid 14 (1978) 1202.

    Google Scholar 

  24. Idem, ibid 14 (1978) 358.

    Google Scholar 

  25. Idem, ibid 14 (1978) 1451.

    Google Scholar 

  26. German Offen Patent 2430 384 (to Hooker Corp).

  27. US Patent 3974 058 (to BASF).

  28. German Patent 1207 358,

  29. W. Vielstich,Chem. Ing. Tech. 33 (1961) 75.

    Google Scholar 

  30. German Offen Patent 2527 386 (to Hooker Corp).

  31. Belgian Patent 846 161.

  32. German Offen Patent 2640 225.

  33. German Offen Patent 2706 577.

  34. US Patent 3974 058.

  35. US Patent 4010 085.

  36. German Offen Patent 2638 995.

  37. German Patent 1207 358.

  38. W. Gnot,Przemysl Chem. 48 (1969) 670.

    Google Scholar 

  39. R. L. LeRoy,ECS Meeting Seattle (1978) Ext Abstract 477.

  40. G. N. Trusov,Soviet Electrochem. 12 (1976) 1661.

    Google Scholar 

  41. H. Hagi,Nippon Kinzoku Gakaishi 40 (80) (1976) 796.

    Google Scholar 

  42. F. R. Smith,J. Electroanalyt. Interfac. Chem. 43 (1973) 45.

    Google Scholar 

  43. S. Srinivasan,ECS Spring Meeting, Philadelphia USA (1977) Abstract 350.

  44. ‘Industrial Electrochemical Processes’ Elsevier Amsterdam (1971) Ch. 4.

  45. Ibid Ch. 9 (by G. Isserlis).

  46. M. Fouad and G. Sedhamed,Electrochim. Acta 20 (1976) 615.

    Google Scholar 

  47. German Patent 1264 420.

  48. Y. Hashimoto,Denki Kagaku 36 (1968) 889.

    Google Scholar 

  49. A. P. Koryushkin,Soviet Electrochem. 13 (1977) 1095.

    Google Scholar 

  50. A. N. Barabotkin,ibid 11 (1975) 800.

    Google Scholar 

  51. G. I. Kharitonov,ibid 11 (1975) 1857.

    Google Scholar 

  52. Z. Glembotski,Elekton. Obrab. Mater. (5) (1973) 66.

    Google Scholar 

  53. B. Matov,ibid (3) (1969) 44.

    Google Scholar 

  54. F. R. Smith,J. Indian Chem. Soc. 52 (1975) 1220.

    Google Scholar 

  55. Idem J. Electrochem. Soc. (1975) 104C 122, Abstract 347.

    Google Scholar 

  56. J. Thonstad and F. Ngoya, paper presented at29th ISE Meeting Budapest (1978).

  57. T. Kituno,Nippon Kakagu Kaishi (1973) 1118.

  58. A. C. C. Tseung and P. R. Vassie,Electrochim. Acta 20 (1975) 763 and21 (1976) 315.

    Google Scholar 

  59. N. Ibl,Metalloberflaeche 24 (1970) 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, A.T., Bin Yusof, J. & Hogan, P. The role of electrode structure and surface texture in the performance of gas evolving electrodes. J Appl Electrochem 9, 765–775 (1979). https://doi.org/10.1007/BF00614972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614972

Keywords

Navigation