Skip to main content
Log in

A transferred NOE study of a tricyclic analog of acyclovir bound to thymidine kinase

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A purine derivative with an acyclic sugar analog, 3,9-dihydro-3-[(2-hydroxyethoxy)methyl]-6-ethyl-9-oxo-5H-imidazo[1,2-a]purine, was studied in the free state and in complex with herpes simplex virus thymidine kinase (HSV1 TK). Transferred NOE experiments, combined with a full relaxation matrix analysis of the substrate's spin system, resulted in a set of distance constraints for all proton pairs. These constraints were used in structure determination procedures based on simulated annealing and molecular dynamics simulations to obtain a family of structures compatible with the experimental NMR data. The results indicate that, although in both states the chains have the syn orientation with respect to the aromatic rings, in the free state the substrate's acyclic moiety is relatively disordered, while in the bound state only one specific conformation is preferred. Fluctuations can only be seen in the case of the terminal hydroxyl group, for which no NOE was recorded and hence no constraints were available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balaram, P., Bothner-By, A.A. and Dadok, J. (1972) J. Am. Chem. Soc., 94, 4015–4016.

    Google Scholar 

  • Biosym Technologies, Inc., San Diego, CA, U.S.A., NMRchitect User Guide, v. 2.3, 1993.

  • Black, M.E. and Loeb, L.A. (1993) Biochemistry, 32, 11618–11626.

    Google Scholar 

  • Boryski, J., Golankiewicz, B. and DeClercq, E. (1991) J. Med. Chem., 34, 2380–2383.

    Google Scholar 

  • Campbell, A.P. and Sykes, B.D. (1991) J. Magn. Reson., 93, 77–92.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1982) J. Magn. Reson., 48, 402–417.

    Google Scholar 

  • Czaplicki, J., Michael, M., Folkers, G. and Milon, A. (1995) J. Chim. Phys., 92, 1773–1776.

    Google Scholar 

  • Edmondson, S.P. (1992) J. Magn. Reson., 98, 283–298.

    Google Scholar 

  • Eriksson, S., Kierdaszuk, B., Munch-Petersen, B., Öberg, B. and Johansson, N.G. (1991) Biochem. Biophys. Res. Commun., 176, 586–592.

    Google Scholar 

  • Fetzer, J. and Folkers, G. (1992) Pharm. Pharmacol. Lett., 2, 112–114.

    Google Scholar 

  • Fetzer, J., Folkers, G., Müller, I. and Keil, G.M. (1993) Virus Genes, 7, 205–209.

    Google Scholar 

  • Fetzer, J., Michael, M., Bohner, T., Hofbauer, R. and Folkers, G. (1994) Protein Expr. Purif., 5, 432–441.

    Google Scholar 

  • Fitt, P.S., Peterkin, P.I. and Grey, V.L. (1976) J. Chromatogr., 124, 137–140.

    Google Scholar 

  • Folkers, G., Trumpp-Kallmeyer, S., Gutbrod, O., Krickl, S., Fetzer, J. and Keil, G.M. (1991) J. Comput.-Aided Mol. Design, 5, 385–404.

    Google Scholar 

  • Furlong, N.B. (1963) Anal. Biochem., 5, 515–522.

    Google Scholar 

  • Fyfe, J.A., Keller, P.M., Furman, P.A., Miller, R.L. and Elion, G.B. (1978) J. Biol. Chem., 253, 8721–8727.

    Google Scholar 

  • Huber, B.E., Richards, C.A. and Krenitsky, T.A. (1991) Proc. Natl. Acad. Sci. USA, 88, 8039–8043.

    Google Scholar 

  • James, T.L. (1994) Methods Enzymol., 239, 416–439.

    Google Scholar 

  • Keller, P.M. and Elion, G.B. (1981) Biochem. Pharmacol., 30, 3071–3077.

    Google Scholar 

  • Lian, L.Y., Barsukov, I.L., Sutcliffe, M.J., Sze, K.H. and Roberts, G.C.K. (1994) Methods Enzymol., 239, 657–699.

    Google Scholar 

  • Liu, H., Thomas, P.D. and James, T.L. (1992) J. Magn. Reson., 98, 163–175.

    Google Scholar 

  • London, R.E., Perlman, M.E. and Davis, D.G. (1992) J. Magn. Reson., 97, 79–98.

    Google Scholar 

  • Michael, M., Fetzer, J. and Folkers, G. (1994) Eur. J. Biochem., 226, 219–226.

    Google Scholar 

  • Miller, W.H. and Miller, R.L. (1980) J. Biol. Chem. 255, 7204–7207.

    Google Scholar 

  • Munch-Petersen, B., Cloos, L., Tyrsted, G. and Eriksson, S. (1991) J. Biol. Chem., 266, 9032–9038.

    Google Scholar 

  • Neuhaus, D. and Williamson, M. (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH Publishers, New York, NY, U.S.A.

    Google Scholar 

  • Nilges, M., Clore, G.M. and Gronenborn, A.M. (1988) FEBS Lett., 239, 129–136.

    Google Scholar 

  • Ohno, T., Gordon, D., San, H., Pompili, V.J., Imperiale, M.J., Nabel, G.J. and Nabel, E.G. (1994) Science, 265, 781–784.

    Google Scholar 

  • Reardon, J.E. and Spector, T. (1989) J. Biol. Chem., 264, 7405–7411.

    Google Scholar 

  • Tropp, J. (1980) J. Chem. Phys., 72, 6035–6043.

    Google Scholar 

  • Zangwill, W.I. (1969) Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, NJ, U.S.A.

    Google Scholar 

  • Zimmermann, N., Beck-Sickinger, A.G., Folkers, G., Krickl, S., Müller, I. and Jung, G. (1991) Eur. J. Biochem. 200, 519–528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czaplicki, J., Bohner, T., Habermann, AK. et al. A transferred NOE study of a tricyclic analog of acyclovir bound to thymidine kinase. J Biomol NMR 8, 261–272 (1996). https://doi.org/10.1007/BF00410325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410325

Keywords

Navigation