Skip to main content
Log in

Solution structure of human neuropeptide Y

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The three-dimensional structure of synthetic human neuropeptide Y in aqueous solution at pH 3.2 and 37°C was determined from two-dimensional 1H NMR data recorded at 600 MHz. A restraint set consisting of 440 interproton distance restraints inferred from NOEs and 11 backbone and 4 side-chain dihedral angle restraints derived from spin-spin coupling constants was used as input for distance geometry calculations in DIANA and simulated annealing and restrained energy minimisation in X-PLOR. The final set of 26 structures is well defined in the region of residues 11–36, with a mean pairwise rmsd of 0.51 Å for the backbone heavy atoms (N, Cα and C) and 1.34 Å for all heavy atoms. Residues 13–36 form an amphipathic α-helix. The N-terminal 10 residues are poorly defined relative to the helical region, although some elements of local structure are apparent. At least one of the three prolines in this N-terminal region co-exists in both cis and trans conformations. An additional set of 24 distances was interpreted as intermolecular distances within a dimer. A combination of distance geometry and restrained simulated annealing yielded a model of the dimer having antiparallel packing of two helical units, whose hydrophobic faces form a well-defined core. Sedimentation equilibrium experiments confirm the observation that neuropeptide Y associates to form dimers and higher aggregates under the conditions of the NMR experiments. Our results therefore support the structural features reported for porcine neuropeptide Y [Cowley, D.J. et al. (1992) Eur. J. Biochem., 205, 1099–1106] rather than the ‘aPP’ fold described previously for human neuropeptide Y [Darbon, H. et al. (1992) Eur. J. Biochem., 209, 765–771].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NPY:

neuropeptide Y

PP:

pancreatic polypeptide

1D, 2D:

one-, two-dimensional

NOE:

nuclear Overhauser enhancement

NOESY:

2D NOE spectroscopy

TOCSY:

2D total correlation spectroscopy

E.COSY:

exclusive correlation spectroscopy

HMQC:

heteronuclear multiple-quantum coherence

rmsd:

root-mean-square deviation

References

  • AnilKumar, ErnstR.R. and WüthrichK. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.

    Google Scholar 

  • BardenJ.A. (1995) Biochem. Biophys. Res. Commun., 215, 264–271.

    Google Scholar 

  • BaxA., GriffeyR.H. and HawkinsB.L. (1983) J. Am. Chem. Soc., 105, 7188–7190.

    Google Scholar 

  • BlundellT.L., PittsJ.E., TickleI.J., WoodS.P. and WuC.-W. (1981) Proc. Natl. Acad. Sci. USA, 78, 4175–4179.

    Google Scholar 

  • BoulangerY., ChenY., CommodariF., SenécalL., LabergeA.-M., FournierA. and St. PierreS. (1995) Int. J. Pept. Protein Res., 45, 86–95.

    Google Scholar 

  • BraunschweilerL. and ErnstR.R. (1983) J. Magn. Reson. 53, 521–528.

    Google Scholar 

  • BrooksB.R., BruccoleriR.E., OlafsonB.D., StatesD.J., SwaminathanS. and KarplusM. (1983) J. Comput. Chem., 4, 187–217.

    Google Scholar 

  • BrüngerA.T. (1992) X-PLOR v. 3.1, A System forX-ray Crystallography and NMR, Yale University, New Haven, CT, U.S.A.

    Google Scholar 

  • ChangP.J., NoelkenM.E. and KimmelJ.R. (1980) Biochemistry, 19, 1844–1849.

    Google Scholar 

  • ChazinW.J. and WrightP.E. (1987) Biopolymers, 26, 973–977.

    Google Scholar 

  • ColmersW.F. and WahlestedtC. (1993) The Biology of Neuropeptide Y and Related Peptides, Humana, Totowa, NJ, U.S.A.

    Google Scholar 

  • CowleyD.J., HoflackJ.M., PeltonJ.T. and SaudekV. (1992) Eur. J. Biochem., 205, 1099–1106.

    Google Scholar 

  • DarbonH., BernassauJ.-M., DeleuzeC., ChenuJ., RousselA. and CambillauC. (1992) Eur. J. Biochem., 209, 765–771.

    Google Scholar 

  • FogolariF., EspositoG., CauciS. and ViglinoP. (1993) J. Magn. Reson., A102, 49–57.

    Google Scholar 

  • GrayT.S. and MorleyJ.E. (1986) Life Sci., 38, 389–401.

    Google Scholar 

  • GriesingerC., SørensenO.W. and ErnstR.R. (1987) J. Magn. Reson., 75, 474–492.

    Google Scholar 

  • Grundemar, L., Sheikh, S.P. and Wahlestedt, C. (1993) In The Biology of Neuropeptide Y and Related Peptides (Eds., Colmers, W.F. and Wahlestedt, C.), Humana, Totowa, NJ, U.S.A., pp. 197–239.

    Google Scholar 

  • GrundemarL. and HåkansonR. (1994) Trends Pharmacol. Sci., 15, 153–158.

    Google Scholar 

  • GüntertP., BraunW. and WüthrichK. (1991) J. Mol. Biol., 217, 517–530.

    Google Scholar 

  • HybertsS.G., MärkiW. and WagnerG. (1987) Eur. J. Biochem., 164, 625–635.

    Google Scholar 

  • HybertsS.G., GoldbergM.S., HavelT.F. and WagnerG. (1992) Protein Sci., 1, 736–751.

    Google Scholar 

  • IUPAC-IUB Commission on Biochemical Nomenclature (1970) J. Mol. Biol., 52, 1–17.

    Google Scholar 

  • LiX., SutcliffeM.J., SchwartzT.W. and DobsonC.M. (1992) Biochemistry, 31, 1245–1253.

    Google Scholar 

  • MacuraS., HuangY., SuterD. and ErnstR.R. (1981) J. Magn. Reson., 43, 259–281.

    Google Scholar 

  • MarionD. and WüthrichK. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Google Scholar 

  • MierkeD.F., DürrH., KesslerH. and JungG. (1992) Eur. J. Biochem., 206, 39–48.

    Google Scholar 

  • MinakataH., TaylorJ.W., WalkerM.W., MillerR.J. and KaiserE.T. (1989) J. Biol. Chem., 264, 7970–7913.

    Google Scholar 

  • NilgesM. (1993) Proteins, 17, 297–309.

    Google Scholar 

  • NoelkenM.E., ChangP.J. and KimmelJ.R. (1980) Biochemistry, 19, 1838–1843.

    Google Scholar 

  • PallaghyP.K., DugganB.M., PenningtonM.W. and NortonR.S. (1993) J. Mol. Biol., 234, 405–420.

    Google Scholar 

  • PallaghyP.K., ScanlonM.J., MonksS.A. and NortonR.S. (1995) Biochemistry, 34, 3782–3794.

    Google Scholar 

  • RuckerS.P. and ShakaA.J. (1989) Mol. Phys., 68, 509–517.

    Google Scholar 

  • SaudekV. and PeltonJ.T. (1990) Biochemistry, 29, 4509–4515.

    Google Scholar 

  • SchachmanH.K. (1959) Ultracentrifugation in Biochemistry, Academic Press, New York, NY, U.S.A., pp. 201–247.

    Google Scholar 

  • WagnerG., BraunW., HavelT.F., SchaumannT., GōN. and WüthrichK. (1987) J. Mol. Biol., 196, 611–639.

    Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1992) Biochemistry, 31, 1647–1651.

    Google Scholar 

  • WishartD.S. and SykesB.D. (1994) J. Biomol. NMR, 4, 171–180.

    Google Scholar 

  • WishartD.S., BigamC.G., HolmA., HodgesR.S. and SykesB.D. (1995) J. Biomol. NMR, 5, 67–81.

    Google Scholar 

  • WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monks, S.A., Karagianis, G., Howlett, G.J. et al. Solution structure of human neuropeptide Y. J Biomol NMR 8, 379–390 (1996). https://doi.org/10.1007/BF00228141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228141

Keywords

Navigation