Skip to main content
Log in

Mast cell growth factor (C-Kit Ligand) in combination with granulocyte-macrophage colony-stimulating factor and interleukin-3:in vivo hemopoietic effects in irradiated mice compared toin vitro effects

  • Published:
Biotherapy

Abstract

In the presence of hemopoietic cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3), mast cell growth factor (MGF; also known as steel factor, stem cell factor, and c-kit ligand) has proven to be a potent hemopoietic regulatorin vitro. In these studies, we examined thein vivo effects of MGF in combination with GM-CSF or GM-CSF plus IL-3. Effects were based on the ability of these cytokines to stimulate recovery from radiation-induced hemopoietic aplasia. Female B6D2F1 mice were exposed to a sublethal 7.75-Gy dose of60Co radiation followed by subcutaneous administration of either saline, recombinant murine (rm) MGF (100Μg/kg/day), rmGM-CSF (100Μg/kg/day), rmIL-3 (100Μg/kg/day), or combinations of these cytokines on days 1–17 postirradiation. Recoveries of bone marrow and splenic spleen colony-forming units (CFU-s), granulocyte macrophage colony-forming cells (GM-CFC), and peripheral white blood cells (WBC), red blood cells (RBC) and platelets (PLT) were determined on days 14 and 17 during the postirradiation recovery period. MGF administered in combination with GM-CSF or in combination with GM-CSF plus IL-3 either produced no greater response than GM-CSF alone or down-regulated the GM-CSF-induced recovery. These results sharply contrasted results ofin vitro studies evaluating the effects of these cytokines on induction of GM-CFC colony formation from bone marrow cells obtained from normal or irradiated B6D2F1 mice, in which MGF synergized with GM-CSF or GM-CSF plus IL-3 to increase both GM-CFC colony numbers and colony size. These studies demonstrate a dichotomy between MGF-induced effectsin vivo andin vitro and emphasize that caution should be taken in attempting to predict cytokine interactionsin vivo in hemopoietically injured animals based onin vitro cytokine effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GM-CSF:

Granulocyte-Macrophage Colonly-Stimulating Factor

IL-3:

Interleukin-3

MGF:

Mast Cell Growth Factor

SCF:

Stem Cell Factor

rm:

Recombinant Murine

CFU-s:

Colony Forming Unit-Spleen

GM-CFC:

Granulocyte Macrophage Colony-Forming Cell

WBC:

White Blood Cells

RBC:

Red Blood Cells

PLT:

Platelets

SLF:

Steel Factor

G-CSF:

Granulocyte Colonly-Stimulating Factor

IL-1:

Interleukin-1

IL-6:

Interleukin-6

Epo:

Erythropoietin

CFC:

Colony-Forming Cell

Sl:

Steel

BFU-e:

Erythroid Burst Forming Units

s.c:

Subcutaneous

PEG:

Polyethyleneglycol

PIXY321:

GM-CSF/IL-3 Fusion Protein

References

  1. Witte ON.Steel locus defines new multipotent growth factor. Cell 1990; 63: 5–6.

    PubMed  Google Scholar 

  2. Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Park LS, Martin U, Mochizuki DY, Boswell HS, Burgess GS, Cosman D., Lyman SD. Identification of a ligand for the c-kit proto-oncogene. Cell 1990; 63: 167–74.

    PubMed  Google Scholar 

  3. Zsebo KM, Wypych J, McNeice IK, Lu HS, Smith KA, Karkare SB, Sachdev RK, Yuschenkoff VN, Brikett NC, Williams LR, Satyagal VN, Tung W, Bosselman RA, Mendiaz EA, Langley KE. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell 1990; 63: 195–201.

    PubMed  Google Scholar 

  4. Nocka K, Buck J, Levi E, Besmer P. Candidate ligand for the c-kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors, EMBO J 1990; 9: 3287–94.

    PubMed  Google Scholar 

  5. Williams DE, DeVries P, Namen AE, Widmer MB, Lyman SD. TheSteel factor. Develop Biol 1992; 151: 368–76.

    PubMed  Google Scholar 

  6. Martin FH, Suggs SV, Langley KE, Lu HS, Ting J, Okino KH, Morris F, McNeice IK, Jacobsen FW, Mendiaz EA, Birkett NC, Smith KA, Johnson MJ, Parker VP, Flores JC, Patel AC, Fischer EF, Erjavec HO, Herrera CJ, Wypych J, Sachdev RK, Pope JA, Leslie I, Wen D, Lin CH, Cupples RL, Zsebo KM. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell 1990; 63: 203–11.

    PubMed  Google Scholar 

  7. McNeice IK, Langley KE, Zsebo KM. Recombinant human stem cell factor synergizes with GM-CSF, G-CSF, IL-3, and Epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp Hematol 1991; 19: 226–31.

    PubMed  Google Scholar 

  8. Broxmeyer HA, Hangoc G, Cooper S, Anderson D, Cosman D, Lyman SD, Williams DE. Influence of murine mast cell growth factor (c-kit ligand) on colony formation by mouse marrow hematopoietic progenitor cells. Exp Hematol 1991; 19: 143–6.

    PubMed  Google Scholar 

  9. Williams N, Bertoncello I, Kavnoudias H, Zsebo KM, McNeice I. Recombinant rat stem cell factor stimulates the amplification and differentiation of fractionated mouse stem cell populations. Blood 1992; 79: 58–64.

    PubMed  Google Scholar 

  10. Anderson DM, Lyman SD, Baird A, Wingnall JM, Eisenman J, Rauch C, March CJ, Boswell S, Gimpel SD, Cosman D, Williams DE. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990; 63: 235–43.

    PubMed  Google Scholar 

  11. DeVries P, Brasel KA, Eisenman JR, Alpert AR, Williams DE. The effect of recombinant mast cell growth factor on purified murine hematopoietic stem cells. J Exp Med 1991; 173: 1205–11.

    PubMed  Google Scholar 

  12. Carow CE, Hangoc G, Cooper SH, Williams DE, Broxmeyer HE. Mast cell growth factor (c-kit ligand) supports the growth of human multipotential progenitor cells with a high replating potential. Blood 1991; 78: 2216–21.

    PubMed  Google Scholar 

  13. Moore MAS. Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 1991; 78: 1–19.

    PubMed  Google Scholar 

  14. Bernstein ID, Andrews RG, Zsebo KM. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+Lin-cells, and the generation of colony-forming cell progeny from CD34+Lin-cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granulocyte-macrophage colony-stimulating factor. Blood 1991; 77: 2316–21.

    PubMed  Google Scholar 

  15. Brandt J, Briddell RA, Srour EF, Leemhuis TB, Hoffman R. The role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood 1992; 79: 634–41.

    PubMed  Google Scholar 

  16. Heyworth CM, Whetton AD, Nicholls S, Zsebo K, Dexter TM. Stem cell factor directly stimulates the development of enriched granulocyte-macrophage colony-forming cells and promotes the effects of other colony-stimulating factors. Blood 1992; 80: 2230–6.

    PubMed  Google Scholar 

  17. Migliaccio G, Migliaccio AR, Valinsky J, Langley K, Zsebo KM, Visser JWM, Adamson JW. Stem cell factor induces proliferation and differentiation of highly enriched murine hematopoietic cells. Proc Natl Acad Sci USA 1991; 88: 7420–4.

    PubMed  Google Scholar 

  18. Bernstein SE, Russell ES, Keighley G. Two hereditary mouse anemias (Sl/Sl d andW/W v) deficient in response to erythropoietin. Ann NY Acad Sci 1968; 149: 475–85.

    PubMed  Google Scholar 

  19. Kitamura Y, Go S. Decreased production of mast cells inSl/Sl d anemic mice. Blood 1979; 53: 492–7.

    PubMed  Google Scholar 

  20. Ebbe S, Phalen E, Stohlman FJ. Abnormal megakaryocytopoiesis inSl/Sl d mice. Blood 1973; 42: 865–71.

    PubMed  Google Scholar 

  21. Ruscetti FN, Boggs DR, Torok BJ, Boggs SS. Reduced blood and marrow neutrophils and granulocytic colony forming cells inSl/Sl d mice. Proc Soc Exp Biol Med 1976; 152: 398–402.

    PubMed  Google Scholar 

  22. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, Hsu RY, Birkett NC, Okino KH, Murdock DC, Jacobsen FW, Langley KE, Smith KA, Takeishi T, Cattanach BM, Galli SJ, Suggs SV. Stem cell factor is encoded at theSl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63: 213–24.

    PubMed  Google Scholar 

  23. Ulich TR, Castillo J, Yi ES, Yin S, McNiece I, Yung YP, Zsebo KM. Hematologic effects of stem cell factorin vivo andin vitro in rodents. Blood 1991; 78: 645–50.

    PubMed  Google Scholar 

  24. Molineux G, Migdalska A, Szmitkowski M, Zsebo KM, Dexter TM. The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administeredin vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 1991; 78: 961–6.

    PubMed  Google Scholar 

  25. Andrews RG, Knitter GH, Bartelmez SH, Langley KE, Farrar D, Hendren W, Appelbaum FR, Bernstein ID, Zsebo KM. Recombinant human stem cell factor, c-kit ligand, stimulates hemopoiesis in primates. Blood 1991; 78: 1975–80.

    PubMed  Google Scholar 

  26. Schuening FG, Appelbaum FR, Deeg HJ, Sulivan-Pepe M, Graham R, Hackman R, Zsebo KM, Strob R. Effects of recombinant canine stem cell factor, a c-kit ligand, and recombinant granulocyte colony-stimulating factor on hematopoietic recovery after otherwise lethal totalbody irradiation. Blood 1993; 81: 20–6.

    PubMed  Google Scholar 

  27. Patchen ML, Fischer R, Williams DE. c-kit ligand enhances multilineage hemopoietic recoveryin vivo following radiation-induced aplasia. Exp Hematol (In press).

  28. MacVittie TJ, Monroy RL, Farese AM, Patchen ML, Seiler FR, Williams DE. Cytokine therapy in canine and primate models of radiation-induced marrow aplasia. Behring Inst Mitt 1991; 90: 1–13.

    Google Scholar 

  29. Farese AM, Williams DE, Seiler FR, MacVittie TJ. Combination protocols of cytokine therapy with IL-3 and GM-CSF in a primate model of radiation-induced marrow aplasia. Blood, 1993; 82: 3012–3018.

    PubMed  Google Scholar 

  30. Hendri PC, Miyazawa K, Yang YC, Langefeld CD, Broxmeyer HE. Mast cell growth factor (c-kit ligand) enhances cytokine stimulation of proliferation of the human factor-dependent cell line M07e. Exp Hematol 1991; 19: 1031–7.

    PubMed  Google Scholar 

  31. Xiao M, Leemhuis T, Broxmeyer HE, Lu L. Influence of combinations of cytokines on proliferation of isolated single cell sorted human bone marrow hematopoietic progenitor cells in the absence and presence of serum. Exp Hematol 1992; 20: 276–9.

    PubMed  Google Scholar 

  32. Urdal DL, Mochizuki D, Conlon PJ, March CJ, Remerowski ML, Eisenmann J, Ramthun C, Gillis S. Lymphokine purification by reversed phase high performance liquid chromatography. J Chromatogr 1984; 296: 171–9.

    PubMed  Google Scholar 

  33. Schulz J, Almond PR, Cunningham JR, Holt JG, Loevinger R, Suntharalingam N, Wright KA, Nath R, Lempert D. A protocol for the determination of absorbed dose for high energy photon and electron beams. Med Phys 1983; 10: 741–71.

    PubMed  Google Scholar 

  34. Patchen ML, MacVittie TJ. Hemopoietic effects of intravenous soluble glucan administration. J Immunopharmacol 1986; 8: 407–25.

    PubMed  Google Scholar 

  35. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–22.

    PubMed  Google Scholar 

  36. Robinson BE, Quesenberry P. Review: Hemopoietic growth factors: Overview and clinical applications, part I. Am J Med Sci 1990; 300: 163–70.

    PubMed  Google Scholar 

  37. Patchen ML, MacVittie TJ, Solberg BD, Souza LM. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerated hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression. Int J Cell Cloning 1990; 8: 107–22.

    PubMed  Google Scholar 

  38. Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, Souza LM. Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 1991; 77: 472–80.

    PubMed  Google Scholar 

  39. Morrissey P, Charrier K, Bressler L, Alpert A. The influence of IL-1 treatment on the reconstitution of the hemopoietic and immune systems after sublethal radiation. J Immunol 1988; 140: 4204–10.

    PubMed  Google Scholar 

  40. Laver J, Abboud M, Gasparetto C, Gillio A, Smith C, O'Reilly RJ, Moore MA. Effects of IL-1 on hematopoietic progenitors after myelosuppressive chemoradiotherapy. Biotherapy 1989; 1: 293–300.

    PubMed  Google Scholar 

  41. Neta R, Oppenheim JJ. Cytokines in therapy of radiation injury. Blood 1988; 72: 1093–5.

    PubMed  Google Scholar 

  42. Patchen ML, Fischer R, MacVittie TJ. Effects of combination interleukin-6 and granulocyte colonystimulating factor on recovery from radiation-induced hemopoietic aplasia. Exp Hematol 1993; 21: 338–44.

    PubMed  Google Scholar 

  43. Williams DE, Dunn JT, Park LS, Frieden EA, Seiler FR, Farese AM, MacVittie TJ. A GM/IL-3 fusion protein promotes neutrophil and platelet recovery in sublethally irradiated rhesus monkeys. Biotech Ther 1993.

  44. Flanagan JG, Leder P. The c-kit ligand: A cell surface molecule altered inSteel mutant fibroblasts. Cell 1990; 63: 185–94.

    PubMed  Google Scholar 

  45. Aye MT, Hashemi S, Leclair B, Zeibdawi A, Trudel E, Halpenny M, Fuller V, Cheng G. Expression of stem cell factor and c-kit mRNA in cultured endothelial cells, monocytes, and cultured human bone marrow stromal cells (CFU-RF). Exp Hematol 1992; 20: 523–7.

    PubMed  Google Scholar 

  46. Brannan CI, Lyman CD, Williams DE, Eisenman J, Anderson DM, Cosman D, Dedell MA, Jenkins NA, Copeland NG. Steel-Dickie mutation encodes c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 1991; 88: 4671–7.

    PubMed  Google Scholar 

  47. Chang CM, Baker WH, Limanni A, Williams JL, Fragoso L, Patchen ML.In vivo gene expression of interleukin-3, granulocyte-macrophage colony-stimulating factor, and c-kit ligand in murine bone marrow and spleen after sublethal irradiation. Exp Hematol 1991; 20: 775.

    Google Scholar 

  48. Ulich TR, Del Castillo J, McNiece IK, Yi ES, Alzona CP, Yin S, Zsebo KM. Stem cell factor in combination with granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF synergistically increase granulopoiesis. Blood 1991; 78: 1954–62.

    PubMed  Google Scholar 

  49. Ahern TJ, Manning MC. Stability of protein pharmaceuticals:In vivo pathways of degradation and strategies for protein stabilization. New York: Plenum, 1991.

    Google Scholar 

  50. Baker WH, Limanni A, Chang CM, Williams JL, Patchen ML. Comparison of interleukin-1 mRNA expression in murine spleens after lethal and sublethal cobalt-60 irradiation. Exp Hematol 1992; 20: 771.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patchen, M.L., Fischer, R., MacVittie, T.J. et al. Mast cell growth factor (C-Kit Ligand) in combination with granulocyte-macrophage colony-stimulating factor and interleukin-3:in vivo hemopoietic effects in irradiated mice compared toin vitro effects. Biotherapy 7, 13–26 (1993). https://doi.org/10.1007/BF01878150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01878150

Key words

Navigation