Skip to main content
Log in

Functional cloning of centromere protein B (CENP-B) box-enriched alphoid DNA repeats utilizing the sequence-specific DNA binding activity of human CENP-Bin vitro

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The centromere is a distinctive portion of the chromosome consisting of ‘centromere DNA’ and ‘centromere proteins’. Recently, a direct molecular interaction was discovered between human centromere protein B (CENP-B) and human centromeric alphoid repeats. This enabled us to isolate the CENP-B-targeted centromeric DNA sequences by positively utilizing the biologic activity of CENP-Bin vitro. In the previous model experiment, we found that oligonucleotides covering the CENP-B binding sequences were enriched by the DNA immunoprecipitation procedure. Here we apply the same technique to the direct isolation of a functional part of human centromeric DNA from a genomic DNA library. Restriction digestion of two isolated clones showed the typical repeating pattern of an alphoid family that is known to localize at the centromeric region of all human chromosomes. Sequence analysis showed that these two clones frequently contain the authentic CENP-B binding motif, CTTCGTTGGAAACGGGA, or a new one with one base replaced, CTTCGTTGGAAACGGGT. The frequent distribution of these motifs suggests that the isolated sequences are directly involved in the organization of centromeric heterochromatin at the primary constriction in conjunction with CENP-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A, Rainaldi G, Lobbiani Aet al. (1987) Chromosomal location by in situ hybridization of the human Sau3A family of DNA repeats.Hum Genet 75: 326–332.

    PubMed  Google Scholar 

  • Birnboim HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. In: Wu R, Grossman L & Moldave K eds.Methods in Enzymology. New York: Academic Press, Vol. 100, pp 243–255.

    Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA.Science 161: 529–540.

    PubMed  Google Scholar 

  • Clarke L (1990) Centromeres of budding and fission yeast.Trends Genet 6: 150–154.

    PubMed  Google Scholar 

  • Cooke CA, Heck MMS, Earnshow WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis.J Cell Biol 105: 2053–2067.

    PubMed  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation.Nucleic Acids Res 61: 6127–6145.

    Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma.Chromosoma 91: 313–321.

    PubMed  Google Scholar 

  • Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs of human chromosomes.Exp Cell Res 92: 148–158.

    PubMed  Google Scholar 

  • Haaf T, Warburton PE, Willard HF (1992) Integration of human α-satellite DNA into simian chromosomes: centromere protein binding and distribution of normal chromosome segregation.Cell 70: 681–696.

    PubMed  Google Scholar 

  • Hörz W, Hess I, Zachau HG (1974) Highly regular arrangement of a restriction-nuclease-sensitive site in rodent satellite DNAs.Eur J Biochem 45: 501–512.

    PubMed  Google Scholar 

  • Johnson DH, Kroisel PM, Klapper HJ, Rosenkranz W (1992) Microdissection of a human marker chromosome reveals its origin and a new family of centromeric repetitive DNA.Hum Mol Genet 1: 741–747.

    PubMed  Google Scholar 

  • Kit S (1961) Equilibrium sedimentation in density gradients of DNA preparations from animal tissues.J Mol Biol 3: 711–716.

    PubMed  Google Scholar 

  • Lica L, Hamkalo BA (1983) Preparation of centromeric heterochromatin by restriction endonuclease digestion of mouse L929 cells.Chromosoma 88: 42–49.

    PubMed  Google Scholar 

  • Lin CC, Sasi R, Fan YS, Court D (1993) Isolation and identification of a novel tandemly repeated DNA sequence in the centromeric region of human chromosome 8.Chromosoma 102: 333–339.

    PubMed  Google Scholar 

  • MaKay (1981) Binding of a simian virus 40 T antigen-related protein to DNA.J Mol Biol 145: 471–488.

    PubMed  Google Scholar 

  • Manuelidis L (1978) Complex and simple sequences in human repeated DNAsChromosoma 66: 1–21.

    PubMed  Google Scholar 

  • Masumoto H, Sugimoto K, Okazaki T (1989a) Alphoid satellite DNA is tightly associated with centromere antigens in human chromosomes throughout the cell cycle.Exp Cell Res 181: 181–196.

    PubMed  Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989b) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite.J Cell Biol 109: 1963–1973.

    PubMed  Google Scholar 

  • Mullenbach R, Lutz S, Holzmann K, Dooley S, Blin N (1992) A non-alphoid repetitive DNA sequence from human chromosome 21.Hum Genet 89: 519–523.

    PubMed  Google Scholar 

  • Muro Y, Sugimoto K, Okazaki T, Ohashi M (1990) The heterogeneity of anticentromere antibodies in immunoblotting analysis.J Rheumatol 17: 1042–1047.

    PubMed  Google Scholar 

  • Pankov R, Lemieux M, Hancock (1990) An antigen located in the kinetochore region in metaphase and on polar microtubule ends in the midbody region in anaphase, characterized using a monoclonal antibody.Chromosoma 99: 95–101.

    PubMed  Google Scholar 

  • Pietras DF, Bennett KL, Siracusa LDet al. (1983) Construction of a smallMus musculus repetitive DNA library: identification of a new satellite sequence inMus musculus.Nucleic Acids Res 11: 6965–6983.

    PubMed  Google Scholar 

  • Saiki RK, Scharf S, Faloona F (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.Science 230: 1350–1354.

    PubMed  Google Scholar 

  • Sakamoto H, Yoshida T, Nakakuki Met al. (1988) Clonedhst gene from normal human leukocyte DNA transforms NIH3T3 cells.Biochem Biophys Res Commun 151: 965–972.

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989)Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J Mol Biol 98: 503–517.

    PubMed  Google Scholar 

  • Sugimoto K (1994) DNA immunoprecipitation: Application to characterizing the target sequences for a human centromere DNA binding protein (CENP-B). In: Celis JE, ed.Cell Biology: A Laboratory Handbook. San Diego: Academic Press, in press.

    Google Scholar 

  • Sugimoto K, Himeno M (1991) A rapid isolation of the unknown 5′-flanking sequence of human CENP-B cDNA with polymerase chain reactions.Agric Biol Chem 55: 2687–2692.

    PubMed  Google Scholar 

  • Sugimoto K, Migita H, Hagishita Y, Yata H, Himeno M (1992a) An antigenic determinant on human centromere protein B (CENP-B) available for production of human-specific anticentromere antibodies in mouse.Cell Struct Funct 17: 129–138.

    PubMed  Google Scholar 

  • Sugimoto K, Muro Y, Himeno M (1992b) Anti-helix-loop-helix domain antibodies: discovery of autoantibodies that inhibit DNA binding activity of human centromere protein B (CENP-B).J Biochem 111: 478–483.

    PubMed  Google Scholar 

  • Sugimoto K, Wakisaka E, Himeno M (1992c) Cycled DNA immunoprecipitation procedure to enrich the target sequences for DNA binding proteins with the fold purification monitored.Anal Biochem 207: 114–120.

    PubMed  Google Scholar 

  • Sugimoto K, Yata H, Himeno M (1993) Mapping of the human CENP-B gene to chromosome 20 and the CENP-C gene to chromosome 12 by a rapid cycle DNA amplification procedure.Genomics 17: 240–242.

    PubMed  Google Scholar 

  • Vissel B, Choo KHA (1992) Evolutionary relationships of multiple alpha satellite subfamilies in the centromeres of human chromosomes 13, 14, and 21.J Mol Evol 35: 137–146.

    PubMed  Google Scholar 

  • Willard HF, Waye JS (1987) Hierarchical order in chromosome-specific human alpha satellite DNA.Trends Genet 3: 192–198.

    Google Scholar 

  • Wolfe J, Darling SM, Erickson RPet al. (1985) Isolation and characterization of an alphoid centromeric repeat family from the human Y chromosome.J Mol Biol 182: 477–485.

    PubMed  Google Scholar 

  • Yang TP, Hansen SK, Oishi KK, Ryder OA, Hamkalo BA (1982) Characterization of a cloned repetitive DNA sequence concentrated on the human X chromosome.Proc Natl Acad Sci USA:79: 6593–6597.

    PubMed  Google Scholar 

  • Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW (1992) CENPE is a putative kinetochore motor that accumulates just before mitosis.Nature 359: 536–539.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, K., Furukawa, K. & Himeno, M. Functional cloning of centromere protein B (CENP-B) box-enriched alphoid DNA repeats utilizing the sequence-specific DNA binding activity of human CENP-Bin vitro . Chromosome Res 2, 453–459 (1994). https://doi.org/10.1007/BF01552868

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01552868

Key words

Navigation