Skip to main content
Log in

Structure of the yolksac epithelium and gills in the early developmental stages of rainbow trout (Salmo gairdneri) maintained in different ambient salinities

  • Main article
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Small numbers of ‘mitochondria-rich’ (‘chloride’) cells were found in the yolksac epithelium of rainbow trout (Salmo gairdneri) embryos just before hatching and in eleuthero-embryos up to 14 days after hatching. This suggests that the yolksac epithelium may play a limited ionoregulatory role in this species.

‘Mitochondria-rich’ cells were also present in small numbers in the branchial epithelium of embryos just before hatching and in increasing numbers in eleutheroembryos during the first two weeks after hatching. The cells in the branchial epithelium showed marked variations in appearance, particularly in the fine structure of the tubular (smooth) endoplasmic reticulum. Few of the mitochondria-rich cells examined here had the pitted apex which is characteristic of homologous cells in other species.

There appeared to be no differences in the numbers or appearance of ‘mitochondria-rich’ cells in embryos and eleutheroembryos reared in different ambient salinities (distilled water, 110/00 and 130/00 sea water), possibly indicating that the genesis of the ionoregulatory function of the gills has not occurred at that interval of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Balon, E. K. 1975. Terminology of intervals in fish development. J. Fish. Res. Board Can. 32: 1663–1670.

    Google Scholar 

  • Degnan, K. J., K. J. Karnaky & J. A. Zadunaisky. 1977. Active chloride transport in thein vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J. Physiol. 271: 155–191.

    Google Scholar 

  • Dépche, J. 1973. Infrastructure superficielle de la vésicule vitelline et du sac péricardique de l'embryon dePoecilia reticulata (Poisson Téléostéen). Z. Zellforsch. Mikrosk. Anat. 141: 235–253.

    Google Scholar 

  • Fawcett, D. W. 1969. The Cell: An Atlas of Fine Structure. Saunders, Philadelphia. 448 pp.

    Google Scholar 

  • Hagenmaier, H. E. 1974. The hatching process in fish embryos. VI. Development, structure, and function of the hatching gland cells of the rainbow trout,Salmo gairdneri Rich. Z. Morph. 79: 233–244.

    Google Scholar 

  • Holliday, F. G. T. 1965. Osmoregulation in marine teleost eggs and larvae. Cal. Coop. Ocean. Fish. Inv. Rep. 10: 89–95.

    Google Scholar 

  • Johnson, D. W. 1973. Endocrine control of hydromineral balance in teleosts. Amer. Zool. 13: 799–818.

    Google Scholar 

  • Jones, M. P., F. G. T. Holliday & A. E. G. Dunn. 1966. The ultrastructure of the epidermis of larvae of the herring (Clupea harengus) in relation to the rearing salinity. J. Mar. Biol. Ass. U.K. 46: 235–239.

    Google Scholar 

  • Kalman, S. M. 1959. Sodium and water exchange in the trout egg. J. Cell. Comp. Physiol. 54: 155–162.

    Google Scholar 

  • Karnaky, K. J., K. J. Degnan & J. A. Zadunaisky. 1977. Chloride transport across the isolated epithelium of killi-fish: a membrane rich in chloride cells. Science 195: 203–205.

    Google Scholar 

  • Karaky, K. J., S. A. Ernst & C. W. Philpott. 1976. Teleost chloride cell. I. Response of pupfishCyrinoden variegatus gill Na, K-ATPase and chloride cell fine structure to various high salinity environments. J. Cell Biol. 70: 144–156.

    Google Scholar 

  • Kessel, R. G. & H. W. Beams. 1962. Electron microscope studies on the gill filaments ofFundulus heteroclitus from sea water and fresh water with special reference to the ultrastructural organization of the ‘chloride cell’. J. Ultrastruc. Res. 6: 77–78.

    Google Scholar 

  • Kikuchi, S. 1977. Mitochondria-rich (chloride) cells in the gill epithelium from four species of stenohaline fresh water teleosts. Cell Tiss. Res. 180: 87–98.

    Google Scholar 

  • Lam, T. J. 1972. Prolactin and hydromineral regulation in fishes. Gen. Comp. Endorcrinol. Suppl. 3: 328–338.

    Google Scholar 

  • Lasker, R. & G. H. Theilacker. 1962. Oxygen consumption and osmoregulation by single Pacific sardine eggs and larval (Sardinops caerulea Girard). J. Cons. Int. Explor. Mer. 27: 25–33.

    Google Scholar 

  • Lasker, R. & L. T. J. Threadgold. 1968. ‘Chloride cells’ in the skin of the larval sardine. Exp. Cell. Res. 52: 582–590.

    Google Scholar 

  • Leatherland, J. F. & L. Lin. 1975. Activity of the pituitary gland in embryo and larval stages of coho salmon,Oncorhynchus kisutch. Can. J. Zool. 53: 297–310.

    Google Scholar 

  • Maetz, J. 1971. Fish gills: mechanisms of salt transfer in fresh water and sea water. Phil. Trans. Roy. Soc. Lond. Ser. B. 262: 209–249.

    Google Scholar 

  • Marshall, W. S. 1977. Transepithelial potential and short-circuit current across the isolated skin ofGillichthus mirabilis (Teleostei: Gobiidae), acclimated to 5% and 100% sea water. J. Comp. Physiol. 114: 157–165.

    Google Scholar 

  • Morgan, M. & P. W. A. Tovell. 1973. The structure of the gill of trout,Salmo gairdneri (Richardson). Z. Zellforsch. Mikrosk. Anat. 142: 147–162.

    Google Scholar 

  • Nakao, T. 1977. Electron microscopic studies of coated membranes in two types of gill epithelial cells of lamprey. Cell Tiss. Res. 178: 385–396.

    Google Scholar 

  • Olson, K. R. & P. O. Fromm. 1973. A scanning electron microscope study of secondary lamellae and chloride cells of rainbow trout (Salmo gairdneri). Z. Zellforsch. Mirkosk. Anat. 143: 439–449.

    Google Scholar 

  • Philpott, C. W. & D. E. Copeland. 1963. Fine structure of chloride cells from three species ofFundulus. J. Cell Biol. 18: 389–404.

    Google Scholar 

  • Potts, W. T. W. & P. O. Rudy. 1969. Water balance in the eggs of Atlantic salmon,Salmo salar. J. Exp. Biol. 50: 223–237.

    Google Scholar 

  • Shen, A. C. Y. & J. F. Leatherland. 1978a. Effect of ambient salinity on hydromineral regulation of eggs, larvae and alevins of rainbow trout (Salmo gairdneri). Can. J. Zool. 56: 571–577.

    Google Scholar 

  • Shen, A. C. Y. & J. F. Leatherland. 1978b. Histogenesis of the pituitary in rainbow trout (Salmo gairdneri) in different ambient salinities with particular reference to the rostral pars distalis. Cell Tiss. Res., in press.

  • Shirai, N. & S. Utida. 1970. Development and degeneration of the chloride cell during seawater and freshwater adaptation of the Japanese eel,Anguilla japonica. Z. Zellforsch. Mikrosk. Anat. 103: 247–264.

    Google Scholar 

  • Threadgold, L. T. & A. H. Houston. 1964. An electron microscope study of the ‘chloride cell’ ofSalmo salar L. Exper. Cell Res. 34: 1–25.

    Google Scholar 

  • Weisbart, M. 1968. Osmotic and ionic regulation in embryos, alevins and fry of the five species of Pacific salmon. Can. J. Zool. 46: 385–397.

    Google Scholar 

  • Yokoya, S. & Y. Ebina. 1976. Hatching glands in salmonid fishes,Salmo gairdneri, Salmo trutta, Salvelinus fontinalis andSalvelinus pluvius. Cell Tiss. Res. 172: 529–540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, A.C., Leatherland, J.F. Structure of the yolksac epithelium and gills in the early developmental stages of rainbow trout (Salmo gairdneri) maintained in different ambient salinities. Environ Biol Fish 3, 345–354 (1978). https://doi.org/10.1007/BF00000526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000526

Keywords

Navigation