Skip to main content
Log in

Pseudomonas for biological control of dutch elm disease. I. Labeling, detection and identification of pseudomonas isolates injected into elms; comparison of various methods

  • Published:
Netherlands Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

To understand the mechanisms involved in biological control of Dutch elm disease byPseudomonas, data were needed on the distribution of the introduced bacteria within elm and on the development of the bacterial population over a period of time.

As traditional biochemical identification techniques are not suitable for distinguishment between individualPseudomonas isolates, three alternative approaches were compared.

  1. 1)

    Chemotaxonomy, using lipopolysaccharide pattern, cell envelope protein pattern or DNA restriction fragment pattern. These techniques were reliable, but tedious.

  2. 2)

    Labeling bacteria with a transposon (Tn903) or a plasmid construct (pMON5003) with a metabolic marker (Lac ZY, coding for β-galactosidase and lactose permease) allowed for a reliable identification of reisolates. However, populations of transposon-labeled bacteria in elms declined much faster than populations of the unlabeled wild type. The plasmid carrying the metabolic marker disappeared from the bacterial populations over time. Apparently both the transposon and the plasmid were a disadvantage to the bacteria compared with the wild type parent strains.

  3. 3)

    Immunoagglutination of representative reisolates with an antiserum against theP. fluorescens isolate in use proved to be specific and fast. For routine purposes the immunoagglutination test therefore was the best method of the various ones employed.

Studies on the distribution of aPseudomonas isolate in elm twigs showed that a stable bacterial population developed in the twigs within three months, but that the bacteria in general did not escape from the xylem vessels in which they were introduced.

Samenvatting

Voor een beter begrip van de mechanismen die ten grondslag liggen aan de biologische bestrijding van de iepeziekte doorPseudomonas spp. zijn gegevens over de verspreiding van de bacteriën binnen de iep en over het verloop van de bacteriedichtheid in de tijd nodig.

Omdat klassieke biochemisch-taxonomische technieken niet geschikt zijn voor het identificeren van individuelePseudomonas-isolaten zijn drie alternatieve benaderingen vergeleken. Chemotaxonomie gebasserd op lipopolysaccharidepatronen, celenvelop eiwitpatronen of DNA-restrictiepatronen bleek betrouwbaar, maar arbeidsintensief. Merken van bacteriën met een transposon (Tn903) of een zogenaamde ‘metabolic marker’ (het LacZY gen, dat codeert voor β-galactosidase en lactose permease) maakte een betrouwbare identificatie van herisolaten mogelijk. Het bleek echter dat de populatiedichtheid van transposon-gemerkte bacteriën in de iep sneller afnam dan de dichtheid van wildtype populaties. Ook bleek het plasmide met het LacZY gen uit de bacterie-populaties te verdwijnen. Blijkbaar had zowel het transposon als het plasmide een negatief effekt op de bacteriën, wat deze methode onbetrouwbaar maakt omdat de verkregen gegevens niet geëxtrapoleerd mogen worden naar het bijbehorende wild-type. Identificatie met immuno-agglutinatie met een antiserum bereid tegen het betreffendePseudomonas-isolaat bleek specifiek en snel. Immuno-agglutinatie bleek daarom de beste methode voor routinewerk.

Studie naar het verloop van dePseudomonas populatie in twijgen van iepen liet zien dat zich binnen drie maanden een stabiele bacteriepopulatie instelde (circa 7×104 bacteriën per twijgmonster), maar dat de bacteriën zich mogelijk niet naar hoger gelegen xyleemelementen konden verspreiden vanuit de houtvaten waar zij bij inoculatie waren ingebracht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.M. & Mills, D., 1985. The use of transposon mutagenesis in the isolation of nutritional and virulence mutants in two pathovars ofPseudomonas syringae. Phytopathology 75: 104–108.

    Google Scholar 

  • Bagdasarian, M., Lurz, R., Ruckert, B., Franklin, F.C.H., Bagdasarian, M.M., Frey, J. & Timmis, K.N., 1981. Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning inPseudomonas. Gene 16: 237–247.

    Article  PubMed  Google Scholar 

  • Birnboim, H.C. & Doly, J., 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7: 1513–1523.

    PubMed  Google Scholar 

  • Casadaban, M.J., Chou, J. & Cohen, S.N., 1980. In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins:Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. Journal of Bacteriology 143: 971–980.

    PubMed  Google Scholar 

  • Doudoroff, M. & Palleroni, N.J., 1974.Pseudomonas. In: Buchanan, R.E. & Gibbons, N.E. (Eds), Bergey's Manual of determinative bacteriology, 8th ed. The Williams & Wilkins Company, Baltimore, p. 217–243.

    Google Scholar 

  • Drahos, D.J., Hemming, B.C. & McPherson, S., 1986. Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Bio/Technology 4: 439–444.

    Article  Google Scholar 

  • Figurski, D.H. & Helinski, D.R., 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences of the U.S.A. 76: 1648–1652.

    Google Scholar 

  • Geels, F.P. & Schippers, B., 1983a. Selection of antagonistic fluorescentPseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopathologische Zeitschrift 108: 193–206.

    Google Scholar 

  • Geels, F.P. & Schippers, B., 1983b. Reduction of yield depressions in high frequency potato cropping soil after seed tuber treatments with antagonistic fluorescentPseudomonas spp. Phytopathologische Zeitschrift 108: 207–214.

    Google Scholar 

  • Gibbs, J.N., Brasier, C.M., McNabb, H.S. Jr. & Heybroek, H.M., 1975. Further studies on pathogenicity in Ceratocystis ulmi. European Journal of Forest Pathology 5: 161–174.

    Google Scholar 

  • King, E.O., Ward, M.K. & Raney, D.E., 1954. Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine 44: 301–307.

    PubMed  Google Scholar 

  • Lam, S.T., Lam, B.S. & Strobel, G.A., 1985. A vehicle for the introduction of transposons into plant-associated pseudomonads. Plasmid 13: 200–204.

    Article  PubMed  Google Scholar 

  • Lam, B.S., Strobel, G.A., Harrison, L.A. & Lam, S.T., 1987. Transposon mutagenesis and tagging of fluorescentPseudomonas: antimycotic production is necessary for control of Dutch elm disease. Proceedings of the National Academy of Sciences of the USA 84: 6447–6451.

    Google Scholar 

  • Lugtenberg, B., Meyers, J., Peters, R., Hoek, P. van der & Alfen, L. van, 1975. Electrophoretic resolution of the ‘major outer membrane protein’ ofEscherichia coli K12 into four bands. FEBS Letters 58: 254–258.

    Article  PubMed  Google Scholar 

  • Maniatis, T., Fritsch, E.F. & Sambrook, J., 1982. Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11725.

    Google Scholar 

  • Mills, D., 1985. Transposon mutagenesis and its potential for studying virulence genes in plant pathogens. Annual Review of Phytopathology 23: 297–320.

    Article  Google Scholar 

  • Murdoch, C.M., Campana, R.J. & Hoch, J., 1986. Development of Dutch elm disease inhibited by fluorescent pseudomonads. Biological and Cultural Tests 1: 71.

    Google Scholar 

  • Oka, A., Sugisaki, H. & Takanami, M., 1981. Nucleotide sequence of the kanamycin resistance transposon Tn903. Journal of Molecular Biology 147: 217–226.

    Article  PubMed  Google Scholar 

  • Scheffer, R.J., 1983. Biological control of Dutch elm disease byPseudomonas species. Annals of Applied Biology 103: 21–30.

    Google Scholar 

  • Scheffer, R.J. & Strobel, G.A., 1988. Dutch elm disease, a model tree disease for biological control. In: Mukerij, K.G. & Garg, K.L. (Eds), Biocontrol of Plant Diseases, Vol. 2. CRC Press, Inc., Boca Raton, FL., p. 103–119.

    Google Scholar 

  • Scheffer, R.J., Elgersma, D.M. & Strobel, G.A., 1989.Pseudomonas for biological control of Dutch elm disease. II. Further studies on the localization, persistence and ecology ofPseudomonas isolates injected into elms. Netherlands Journal of Plant Pathology 95: 293–304.

    Google Scholar 

  • Schippers, B., Bakker, A.W. & Bakker, P., 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology 25: 339–358.

    Article  Google Scholar 

  • Straka, R.P. & Stokes, J.L., 1957. Rapid destruction of bacteria in commonly used diluents and its elimination. Applied Microbiology 5: 21–25.

    PubMed  Google Scholar 

  • Tchernoff, V., 1965. Methods for screening and for the rapid selection of elms for resistance to Dutch elm disease. Acta Botanica Neerlandica 14: 409–452.

    Google Scholar 

  • Tsai, C.M. & Frasch, C.E., 1982. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analitical Biochemistry 119: 115–119.

    Article  Google Scholar 

  • Weger, L.A. de, Boxtel, R. van, Burg, B. van der, Gruters, R.A., Geels, F.P., Schippers, B. & Lugtenberg, B., 1986. Siderophores and outer membrane proteins of antagonistic plant-growth-stimulating root-colonizingPseudomonas ssp. Journal of Bacteriology 165: 585–594.

    PubMed  Google Scholar 

  • Weger, L.A. de, Jann, B., Jann, K. & Lugtenberg, B., 1987. Lipopolysaccharides ofPseudomonas spp. that stimulate plant growth: composition and use for strain identification. Journal of Bacteriology 169: 1441–1446.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffer, R.J., Elgersma, D.M., De Weger, L.A. et al. Pseudomonas for biological control of dutch elm disease. I. Labeling, detection and identification of pseudomonas isolates injected into elms; comparison of various methods. Netherlands Journal of Plant Pathology 95, 281–292 (1989). https://doi.org/10.1007/BF01977732

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01977732

Additional keywords

Navigation