Skip to main content
Log in

A Continuum-Mechanical Theory for Nematic Elastomers

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We develop a continuum theory for the mechanical behavior of rubber-like solids that are formed by the cross-linking of polymeric fluids that include nematic molecules as elements of their main-chains and/or as pendant side-groups. The basic kinematic ingredients of this theory are identical to those arising in continuum-level theories for nematic fluids: in addition to the deformation, which describes the trajectories of material particles, an orientation, which delineates the evolution of the nematic microstructure, is introduced. The kinetic structure of our theory relies on the precept that a complete reckoning of the power expended during the evolution of a continuum requires the introduction of forces that act conjugate to each operative kinematic variable and that to each such force system there should correspond a distinct momentum balance. In addition to conventional deformational forces, which expend power over the time-rate of the deformation and enter the deformational (or linear) momentum balance, we, therefore, introduce a system of orientational forces, which expend power over the time-rate of the orientation and enter an additional orientational momentum balance. We restrict our attention to a purely mechanical setting, so that the thermodynamic structure of our theory rests on an energy imbalance that serves in lieu of the first and second laws of thermodynamics. We consider only nematic elastomers that are incompressible and microstructurally inextensible, and a novel aspect of our approach concerns our treatment of these material constraints. We refrain both from an a priori decomposition of fields into active and reactive components and an introduction of Lagrange multipliers; rather, we start with a mathematical decomposition of the dependent fields such as the deformational stress based on the geometry of the constraint manifold. This naturally gives rise to active and reactive components, where only the former enter into the energy imbalance because the latter automatically expend zero power in processes consistent with the constraints. The reactive components are scaled by multipliers which we take to be constitutively indeterminate. We assume constitutive equations for the active components, and the requirement that these equations be consistent with the energy imbalance in all processes leads to the active components being determined by an energy density response function of the deformation gradient, the orientation, and the orientation gradient. We formulate the requirements of observer independence and material symmetry for such a function and provide, as a specialization, an expression that encompasses the energy densities used in the Mooney-Rivlin description of rubber and the Oseen-Zöcher-Frank description of nematic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Finkelmann, H.J. Kock and G. Rehage, Liquid crystalline elastomers — a new type of liquid of liquid crystalline material. Makromolekulare Chemie, Rapid Commun. 2 (1981) 317-322.

    Article  Google Scholar 

  2. R. Zentel, Liquid crystalline elastomers. Angew. Chemie Adv. Materials 101 (1989) 1437-1445.

    Google Scholar 

  3. P.G. de Gennes, Réflexions sur un type de polymères nématiques. C. R. Acad. Sci. Paris 281 (1975) 101-103.

    Google Scholar 

  4. F.J. Davis and G.R. Mitchell, Mechanically induced molecular switching in liquid-crystal elastomers. Polymer Commun. 28 (1987) 8-11.

    Google Scholar 

  5. J. Schätzle, W. Kaufhold and H. Finkelmann, Nematic elastomers: The influence of external mechanical fields on the liquid-crystalline phase behavior. Makromolekulare Chemie 190 (1989) 3269-3284.

    Article  Google Scholar 

  6. W. Meier and H. Finkelmann, Piezoelectricity of cholesteric elastomers. Makromolekulare Chemie, Rapid Commun. 11 (1990) 599-605.

    Article  Google Scholar 

  7. S.U. Vallerien, F. Kremer, E.W. Fischer, H. Kapitza, R. Zentel and H. Poths, Experimental proof of piezoelectricity in cholesteric and chiral smectic C*-phases of LC-elastomers. Makromolekulare Chemie, Rapid Commun. 11 (1990) 593-598.

    Article  Google Scholar 

  8. C.H. Legge, F.J. Davis and G.R. Mitchell, Memory effects in liquid crystal elastomers. J. Physique II 1 (1991) 1253-1261.

    Article  ADS  Google Scholar 

  9. M. Warner and X.J. Wang, Elasticity and phase behavior of nematic elastomers. Macromolecules 24 (1991) 4932-4941.

    Article  ADS  Google Scholar 

  10. M. Warner and E.M. Terentjev, Nematic elastomers — a new state of matter? Progress Polymer Sci. 21 (1996) 853-891.

    Article  Google Scholar 

  11. H. Finkelmann, Liquid crystals — state of the art. Angew. Chemie 100 (1988) 1019-1020.

    Google Scholar 

  12. J.L. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheology 5 (1961) 23-34.

    Article  MathSciNet  ADS  Google Scholar 

  13. F.M. Leslie, Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265-283.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. M.J. Stephen and J.P. Straley, Physics of liquid crystals. Rev. Modern Phys. 46 (1974) 617-704.

    Article  ADS  Google Scholar 

  15. S. Chandrasekhar, Liquid Crystals, 2nd edn. Cambridge Univ. Press, Cambridge (1992).

    Google Scholar 

  16. A.N. Beris and B.J. Edwards, Thermodynamics of Flowing Systems. Oxford Univ. Press, New York (1994).

    Google Scholar 

  17. W.C. Oseen, The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-899.

    Article  MATH  Google Scholar 

  18. P. Germain, Sur l'application de la méthode des puissances virtuelles en mécanique des milieux continus. C. R. Acad. Sci. Paris Sér. A 274 (1973) 1051-1055.

    MathSciNet  Google Scholar 

  19. S.S. Antman and J.E. Osborn, The principle of virtual work and integral laws of motion. Arch. Rational Mech. Anal. 69 (1979) 231-262.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G.A. Maugin, The principle of virtual power in continuum mechanics — application to coupled fields. Acta Mech. 35 (1980) 1-70.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. E. Fried and M.E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter. Phys. D 68 (1993) 326-343.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Fried and M.E. Gurtin, Dynamic solid-solid transitions with phase characterized by an order parameter. Phys. D 72 (1994) 287-308.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Fried and M.E. Gurtin, Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Statist. Phys. 95 (1999) 1361-1427.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Fried, Continua described by a microstructural field. Z. Angew. Math. Phys. 47 (1996) 168-175.

    Article  MATH  MathSciNet  Google Scholar 

  25. M.E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys. D 92 (1996) 178-192.

    Article  MATH  MathSciNet  Google Scholar 

  26. M.A. Goodman and S.C. Cowin, A continuum theory for granular materials. Arch. Rational Mech. Anal. 44 (1972) 249-266.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. G. Capriz and P. Podio-Guidugli, Structured continua from a Lagrangian point of view. Ann. Mat. Pura Appl. 135 (1983) 1-25.

    Article  MATH  MathSciNet  Google Scholar 

  28. G. Capriz, Continua with Microstructure. Springer, New York (1989).

    MATH  Google Scholar 

  29. C. Truesdell and W. Noll, The non-linear field theories of mechanics. In: S. Flügge (ed.), Handbuch der Physik III/3. Springer, Berlin (1965).

    Google Scholar 

  30. J.L. Ericksen and R.S. Rivlin, Large elastic deformations of homogeneous anisotropic materials. J. Rational Mech. Anal. 3 (1954) 257-299.

    MathSciNet  Google Scholar 

  31. D.E. Carlson and D.A. Tortorelli, On hyperelasticity with internal constraints. J. Elasticity 42 (1996) 91-98.

    Article  MATH  MathSciNet  Google Scholar 

  32. R.S. Rivlin, Some topics in finite elasticity. In: Proceedings of the 1st Naval Sympos. on Structural Mechanics, Pergamon, New York (1960).

    Google Scholar 

  33. H. Zöcher, The effect of a magnetic field on the nematic state. Trans. Faraday Soc. 29 (1933) 945-957.

    Article  Google Scholar 

  34. F.C. Frank, On the theory of liquid crystals. Discussions Faraday Soc. 25 (1958) 19-28.

    Article  Google Scholar 

  35. P.G. de Gennes, Weak nematic gels. In: W. Helfrich and G. Heppke (eds), Liquid Crystals of One-and Two-Dimensional Order. Springer, Berlin (1980).

    Google Scholar 

  36. M. Warner, K.P. Gelling and T.A. Vilgis, Theory of nematic networks. J. Chem. Phys. 88 (1988) 4008-4013.

    Article  ADS  Google Scholar 

  37. S.S. Abramchuk and A.R. Khokhlov, Molecular theory of high elasticity of polmer netwroks, with an accounting for orientational ordering of units. Dokl. Phys. Chemistry 297 (1988) 1069-1072.

    Google Scholar 

  38. P. Bladon, E.M. Terentjev and M. Warner, Transitions and instabilities in liquid-crystal elastomers. Phys. Rev. E 47 (1993) R3838-R3840.

    Article  ADS  Google Scholar 

  39. E.M. Terentjev, Phenomenological theory of non-uniform nematic elastomers: free energy of deformations and electric field effects. Europhys. Lett. 23 (1993) 27-32.

    ADS  Google Scholar 

  40. T. Tanaka and G. Allen, Short-range order in deformed polymer networks. Macromolecules 10 (1977) 426-429.

    ADS  Google Scholar 

  41. J.-P. Jarry and L. Monnerie, Effects of a nematic-like interaction in rubber elasticity theory. Macromolecules 12 (1979) 316-320.

    Article  ADS  Google Scholar 

  42. B. Deloche and E.T. Samulski, Rubber elasticity: a phenomenological approach using orientational corrections. Macromolecules 21 (1988) 3107-3111.

    Article  ADS  Google Scholar 

  43. P. Bladon and M. Warner, Elasticity of nematic networks and nematic effects in conventional rubbers. Macromolecules 26 (1993) 1078-1085.

    Article  ADS  Google Scholar 

  44. G. Green, On the laws of reflection and refraction of light at the common surface of two non-cyrstallized media. Trans. Cambridge Philos. Soc. 7 (1839) 245-269.

    Google Scholar 

  45. G. Green, On the propagation of light in crystallized media. Trans. Cambridge Philos. Soc. 7 (1841) 113-120.

    Article  Google Scholar 

  46. B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13 (1963) 167-178.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Q.-S. Zheng, Theory of representation for tensor functions — a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47 (1994) 545-587.

    Article  MATH  Google Scholar 

  48. M. Mooney, A theory of large elastic deformation. J. Appl. Phys. 11 (1940) 582-592.

    Article  MATH  ADS  Google Scholar 

  49. R.S. Rivlin, Large elastic deformations of isotropic materials, I. Fundamental concepts. Philos. Trans. Roy. Soc. London Ser. A 240 (1948) 459-490.

    MATH  MathSciNet  ADS  Google Scholar 

  50. S.E. Martin and D.E. Carlson, The behavior of elastic heat conductors with second-order response functions. Z. Angew. Math. Phys. 28 (1977) 311-329.

    Article  MATH  Google Scholar 

  51. D.R. Anderson, On the continuum mechanics of nematic elastomers, PhD Thesis, University of Illinois at Urbana-Champaign (1999).

  52. F.D. Murnaghan, Finite Deformation of an Elastic Solid. Wiley, New York (1951).

    MATH  Google Scholar 

  53. E.G. Virga, Variational Theories for Liquid Crystals. Chapman and Hall, London (1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.R., Carlson, D.E. & Fried, E. A Continuum-Mechanical Theory for Nematic Elastomers. Journal of Elasticity 56, 33–58 (1999). https://doi.org/10.1023/A:1007647913363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007647913363

Navigation