Skip to main content
Log in

How wide can a wide cross be?

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Wide crosses in wheat are reviewed in relation to various factors that facilitate wide crossing to show that wide crosses can be as wide as one can make them. Included in this review is a particular reference to wheat-wheatgrass (Agropyron complex) crosses and an update on wide crosses of wheat with various genera of Agropyron complex. Hybrid seed set is too variable to predict whether a wide hybrid, where no seed was obtained in one attempt, will not be possible. High crossability genes seem to facilitate not only fertilization but also seed development, enabling embryo rescue. Variability for crossability occurs not only in wheat but also in alien species. Contrary to conventional thinking, several wide hybrids with wheat can be produced when species with lower chromosome numbers are used as female parents. Pre-and post-fertilization barriers to wide crosses do not appear to be equally strong, and can be overcome by the development and application of various technologies. Considering these aspects of wide hybridization, and based on recent successes in producing previously unsuccessful and very wide hybrids, it is concluded that how wide cross between plant species can be made is an open question and that many new and wider hybrids can be produced in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad F. & A. Comeau, 1990. Wheat x pearl millet hybridization: consequence and potential. Euphytica 50: 181–190.

    Google Scholar 

  • Ahmad F. & A. Comeau, 1991a. Production, morphology and cytogenetics of Triticum aestivum (L.) Thell x Elymus scabrus (R. Br.) Love intergeneric hybrids obtained by in ovulo embryo culture. Theor. Appl. Genet. 81: 833–839.

    Google Scholar 

  • Ahmad F. & A. Comeau, 1991b. A new intergeneric hybrid between Triticum aestivum L. and Agropyron fragile (Roth) Candargy: variation in A. fragile for suppressing the wheat Ph-locus activity. Pl. Breed. 106: 275–283.

    Google Scholar 

  • Alonso L.C. & G. Kimber, 1980. A hybrid between diploid Agropyron junceum and Triticum aestivum. Cereal Res. Commun. 8: 355–358.

    Google Scholar 

  • Armstrong J.M., 1936. Hybridization of Triticum and Agropyron. I. Crossing results and description of the first generation hybrids. Canad. J. Res. Sec. C 14: 190–202.

    Google Scholar 

  • Armstrong J.M. & H.A. McLennan, 1944. Amphiploidy in Triticum-Agropyron hybrids. Sci. Agri. 24: 285–298.

    Google Scholar 

  • Azizkhodzhacv A., D.M. Daminova & B.S. Dzhuraev, 1993. Effect of exogenous hormones in overcoming cross incompatibility following distant hybridization in cotton. Pl. Breed. Abst. 19: 251.

    Google Scholar 

  • Barkworth M.E., 1992. Taxonomy of the Triticeae: a historical perspective. Hereditas 116: 1–14.

    Google Scholar 

  • Baum M., E.S. Laguda & R. Appels, 1992. Wide crosses in cereals. Annu. Rev. Pl. Physiol. Mol. Biol. 43: 117–143.

    Google Scholar 

  • Beaudry J.R., 1951. Seed development following the mating of Elymus virginicus L. and Agropyron repens L. Beauv. Genetics 36: 109–126.

    Google Scholar 

  • Bennett M.D., 1984. Nuclear architecture and its manipulation. Stadler Genet. Symp. 16: 469–502.

    Google Scholar 

  • Bochev, B. & R. Kostova, 1974. Cytogenetic and biochemical investigations on intergeneric hybrids between Aegilops and Triticum. 4th Int. Wheat Genet. Symp., pp. 645–651.

  • Bowden W.M., 1959. Chromosome numbers and taxonomic notes on northern grasses. I. Tribe Triticeae. Canad. J. Bot. 37: 1143–1151.

    Google Scholar 

  • Cauderon Y., 1958. Etude cytogénétique des Agropyrum francais et de leurs hybrides avec les blés. Ann. Amél. Pl. 8: 389–567.

    Google Scholar 

  • Cauderon, Y., 1963. Genome analysis in the genus Agropyron. 2nd Int. Wheat Genet. Symp., Hereditas (Suppl. 2): 218–234.

  • Cauderon, Y., B. Saigne & M. Dauge, 1973. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. 4th Int. Wheat Genet. Symp., pp. 401–407.

  • Cauderon Y., J. Tempe & G. Gay, 1978. Creation et analyse cytogenetique d'um nouvel hybride: Hordeum vulgare ssp. distichum x Triticum timopheevii. C. R. Acad. Sci. Paris 286: 1687–1690.

    Google Scholar 

  • Charpentier A., M. Feldman & Y. Cauderon, 1986. Chromosome pairing at meiosis of F1 hybrids and backcross derivatives of Triticum aestivum x hexaploid Agropyron junceum. Canad. J. Genet. Cytol. 28: 1–6.

    Google Scholar 

  • Chen C.C. & P.B. Gibson, 1972. Barriers to hybridization of Trifolium repens with related species. Canad. J. Genet. Cytol. 14: 381–389.

    Google Scholar 

  • Chen J. & Y. Zhang, 1980. The breeding and utilization of naked seed rice. Acta Genet. Sinica 7: 185–188.

    Google Scholar 

  • Chen, Q., J. Jahier & Y. Cauderon, 1989. Production and cytogenetic studies of hybrids between T. aestivum L. Thell and A. cristatum Gaertn. C.R. Acad. Sci. Paris, t308, Serie III: 425–430.

  • Chen Q., J. Jahier & Y. Cauderon, 1990. Intergeneric hybrids between Triticum aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi and A. desertorum. Genome 33: 663–667.

    Google Scholar 

  • Claesson L., M. Kotimaki & R.von Bothmer, 1990. Production and cytogenetic analysis of the hybrid of Elymus caninus x Triticum aestivum and the backcross to T. aestivum. Cereal. Res. Commun. 18: 315–319.

    Google Scholar 

  • Collins G.B., N.L. Taylor & J.W.De Verna, 1984. In vitro approaches to interspecific hybridization and chromosome manipulation in crop plants. Stadler Genet. Symp. 16: 323–383.

    Google Scholar 

  • Comeau A., G. Fedak, C.A. St-Pierre & C. Theriault, 1985. Intergeneric hybrids between Triticum aestivum and species of Agropyron and Elymus. Cereal Res, Commun. 13: 149–153.

    Google Scholar 

  • Comeau A., G. Fedak, C.A. St-Pierre & R. Cazeault, 1988a. Intergeneric hybrids between Hordeum jubatum (4 x) and Triticum aestivum (6 x). Genome 30: 245–249.

    Google Scholar 

  • Comeau A., A. Plourde, C.A. St-Pierre & P. Nadeau, 1988b. Production of doubled haploid wheat lines by wheat x maize hybridization. Genome 32 (Suppl. 1): 482.

    Google Scholar 

  • Dewey D.R., 1977. The role of wide hybridization in plant improvement. In: R. Bogart (Ed.) Genetics Lectures, Vol. 5, Oregon State University Press, Corvallis, pp. 7–18.

    Google Scholar 

  • Dewey D.R., 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Stadler Genet. Symp. 16: 209–279.

    Google Scholar 

  • Dewey W.G., 1983. Intergeneric hybridization. Annu. Wheat Newslett. 29: 152.

    Google Scholar 

  • Dewey W.G., 1985. Winter wheat. Annu. Wheat Newslett. 31: 186.

    Google Scholar 

  • Driscoll C.J., 1975. First compendium of wheat-alien chromosome lines. Annu. Wheat Newslett. 21: 16–32.

    Google Scholar 

  • Dujardin M. & W.W. Hanna, 1989. Crossability of pearl millet with wild Pennisetum species. Crop. Sci. 29: 77–80.

    Google Scholar 

  • Duvick D., 1989. The romance of plant breeding. Stadler Genet. Symp. 19: 39–54.

    Google Scholar 

  • Dvorak, J. & P.E. McGuire, 1990, Triticeae, the gene pool for wheat breeding, Genome mapping of wheat and related species. Publ. Workshop, 1–2 Sep. 1990, West Sacrament, California, pp. 3–8.

  • Falk D.E. & K.J. Kasha, 1981 Comparison of crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum). Canad. J. Genet. Cytol. 23: 81–88.

    Google Scholar 

  • Fatih A.M.B., 1983. Analysis of breeding potential of wheat-Agropyron and wheat-Elymus derivatives. Hereditas 98: 287–295.

    Google Scholar 

  • Fedak G., 1980. Production, morphology and meiosis of reciprocal barley-wheat hybrids. Canad. J. Genet. Cytol. 22: 117–123.

    Google Scholar 

  • Fedak G. & Y.P. Jui, 1982. Chromosomes of Chinese Spring wheat carrying genes for crossability with Betzes barley. Canad. J. Genet. Cytol. 24: 227–233.

    Google Scholar 

  • Feldman M., 1983. Gene transfer from wild species into cultivated plants. Genetika 15: 145–161.

    Google Scholar 

  • Franke R., R. Nestrowicz, A. Senula & B. Staat, 1992. Intergeneric hybrids between Triticum aestivum L. and wild Triticeae. Hereditas 116: 225–231.

    Google Scholar 

  • Friebe B., J. Jiang, B.S. Gill & P.L. Dyck, 1983. Radiation induced nonhomoeologous wheat — Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet. 86: 141–149.

    Google Scholar 

  • Gibson P.B. & C.C. Chen, 1973. Success in hybridizing and selfing Trifolium repens at different temperatures. Crop Sci. 13: 723–730.

    Google Scholar 

  • Gill B.S., W.J. Raupp & H.C. Corke, 1992. Progress in genome mapping of wheat and related species. Proc. 2nd International Triticeae Mapping Initiative, Manhattan, KS. Report No. 10, Univ. of California Genetic Resources Conservation Program, Davis, CA, 82 p.

    Google Scholar 

  • Gill B.S. & J.G. Waines, 1978. Paternal regulation of seed development in wheat hybrids. Theor. Appl. Genet. 51: 265–270.

    Google Scholar 

  • Gill B.S., J.G. Waines & H.C. Sharma, 1981. Endosperm abortion and the production of viable Aegilops squarrosa x Triticum boeoticum hybrids by embryo culture. Plant Sci. Lett. 23: 181–187.

    Google Scholar 

  • Goodman R.M., H. Hauptli, A. Crossway & V.V. Knaup, 1987. Gene transfer in crop improvement. Sci. 236: 48–54.

    Google Scholar 

  • Grant, V., 1981. Plant speciation. Columbia University Press, 183 p.

  • Gupta P.K. & G. Fedak, 1985. Intergeneric hybrids between Hordeum californicum and Triticum aestivum. J. Hered 76: 365–368.

    Google Scholar 

  • Hadley, H.H. & S.J. Openshaw, 1980. Interspecific and intergeneric hybridization. In: W.R. Fehr & H.H. Hadley (Eds) Hybridization of crop plants. ASA Pub. pp. 133–159.

  • Hall O.L., 1954. Hybridization of wheat and rye after embryo transplantation. Hereditas 40: 453–458.

    Google Scholar 

  • Hogenboom N.G., 1975. Incompatility and incongruity: two different mechanisms for the non-functioning of intimate partner relationship. Proc. Royal Soc. London B 188: 361–375.

    Google Scholar 

  • Jalani B.S. & J.P. Moss, 1980. The site of action of the crossability genes (Kr1, Kr2) between Triticum and Secale. I. Pollen germination, pollen tube growth and number of pollen tubes. Euphytica 29: 571–579.

    Google Scholar 

  • Jauhar P.P., 1990. Multidiscipliary approach to genome analysis in the diploid species, Thinopyrum bessarabicum, Th. elongatum (Lophopyrum elongatum), of Triticeae. Theor. Appl. Genet. 80: 523–536.

    Google Scholar 

  • Jauhar P.P., 1992. Chromosome pairing between hexaploid bread wheat and tetraploid crested wheatgrass (Agropyron cristatum). Hereditas 116: 107–109.

    Google Scholar 

  • Jauhar, P.P., 1993. Alien gene transfer and genetic enrichment of bread wheat. In: A.B. Damania (Ed.) Biodiversity and wheat improvement. John Wiley & Sons, pp. 103–116.

  • Jiang J., B. Friebe & B.S. Gill, 1994. Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.

    Google Scholar 

  • Jiang J. & D. Liu, 1987. New Hordeum-Triticum hybrids. Cereal Res. Commun. 15: 95–99.

    Google Scholar 

  • Kaneshiro K.V., 1980. Sexual isolation, speciation and the direction of evolution. Evolution 34: 437–444.

    Google Scholar 

  • Kerber E.R. & P.L. Dyck, 1973. Inheritance of stem rust resistance from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Canad. J. Genet. Cytol. 15: 397–409.

    Google Scholar 

  • Kihara H. & F. Lilienfeld, 1935. Genomanalyze bei Triticum und Aegilops VII. Weitere untersuchungen an Aegilops × Triticum und Aegilops × Aegilops bastarden. Cytologia 6: 195–216.

    Google Scholar 

  • Kihara H., 1937. Genomanalyse bei Triticum und Aegilops. VII. Kurze uebersicht uber die Ergebnisse der Jahre 1934–1935. Mem. Coll. Agri., Kyoto Imper. Univer. 11: 1–61.

    Google Scholar 

  • Kimber G. & M. Feldman, 1987. Wild wheat: an introduction. Special report 353, College of Agri, Univ. of Missouri, Columbia, MO, 142 p.

    Google Scholar 

  • Kingsolver C.H., J.S. Melching & K.R. Bromfield, 1983. The threat of exotic plant pathogens to agriculture in the United States. Pl. Dis. 67: 595–600.

    Google Scholar 

  • Knobloch I.W., 1968. A check list of crosses in Gramineae. Univ. of Michigan, Ann. Arbor, 170 p.

    Google Scholar 

  • Knott D.R., 1961. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Canad. J. Pl. Sci. 41: 109–123.

    Google Scholar 

  • Krolow K.D., 1970. Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z. Pflanzenzüchtg. 64: 44–72.

    Google Scholar 

  • Kruse, A., 1969. Intergeneric hybrids between Triticum aestivum L. (v. Koga II, 2n=42) and Avena sativa L. (v. Stäl, 2n=42) with pseudogamous seed formation. Kongelige Veterinaer-Og Landbohojskole Arsskriff, pp. 188–200.

  • Kruse A., 1973. Hordeum-Triticum hybrids. Hereditas 73: 157–161.

    Google Scholar 

  • Lange W. & B. Wojciechowska, 1976. The crossability of common wheat (Triticum aestivum) with cultivated rye (Secale cereale L.). I. Crossability, pollen grain germination and pollen tube growth. Euphytica 25: 609–620.

    Google Scholar 

  • Larson, R.I. & T.G. Atkinson, 1973. Wheat-Agropyron substitution lines as source of resistance to wheat streak mosaic virus and its vector, Aceria tulipae. 4th Int. Wheat Genet. Symp. pp. 173–177.

  • Laurie D.A. & M.D. Bennett, 1986. Wheat × maize hybridization. Canad. J. Genet. Cytol. 28: 313–316.

    Google Scholar 

  • Laurie D.A. & M.D. Bennett, 1987. The effect of crossability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat × maize crosses. Theor. Appl. Genet. 73: 403–409.

    Google Scholar 

  • Laurie D.A. & M.D. Bennett, 1988. Cytological evidence for fertilization in hexaploid wheat × sorghum crosses. Plant Breeding 100: 73–82.

    Google Scholar 

  • Laurie D.A., L.S. O'Donoughue & M.D. Bennett, 1989. Wheat × maize and other sexual hybrids: their potential for genetic manipulation and crop improvement. Stadler Genet. Symp. 19: 95–126.

    Google Scholar 

  • Leighty C.E. & W.J. Sando, 1926. Intergeneric hybrids in Aegilops, Triticum and Secale. J. Agric. Res. 33: 101–141.

    Google Scholar 

  • Lein A., 1943. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Z. indukt. Abstamm-u. Vereblehre 81: 28–61.

    Google Scholar 

  • Leitch A.R., T. Schwarzacher, W. Mosgoller & J.S. Heslop-Harrison, 1991. Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma 101: 206–213.

    Google Scholar 

  • Lelivelt C.L.C., 1993. Studies of pollen grain germination, pollen tube growth, micropylar penetration and seed set in intraspecific and intergeneric crosses within three Cruciferae species. Euphytica 67: 185–197.

    Google Scholar 

  • Li Z. & S. Zhang, 1988. Study on the proteinof the progeny from Triticum aestivum × Pisum sativum I. Analysis of protein and pigment variation. 16th Intl. Congr. Genet., Genome 30 (Suppl. 1). 88.

    Google Scholar 

  • Limin A.E. & D.B. Fowler, 1990. An intergeneric hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome 33: 581–584.

    Google Scholar 

  • Linskens, H.F., 1983. Pollination processes: understanding fertilization and limits to hybridization. In: W.J. Meudt (Ed) Strategies of plant reproduction, pp. 35–50.

  • Love A., 1984. Conspectus of the Triticeae. Feddes Rep. 95: 425–521.

    Google Scholar 

  • Lu B. & R.von Bothmer, 1989. Cytogenetical studies of a dihaploid and hybrid from intergeneric cross Elymus shandongensis × Triticum aestivum. Hereditas 111: 231–238.

    Google Scholar 

  • Lu B. & von R. Bothmer, 1991. Production and cytogenetic analysis of the intergeneric hybrids between nine Elymus species and common wheat (Triticum aestivum L.). Euphytica 58: 81–95.

    Google Scholar 

  • Luo M.C., C. Yen & J.L. Yang, 1993. Crossability percentages of bread wheat landraces from Shaanxi and Henan provinces, China with rye. Euphytica 67: 1–8.

    Google Scholar 

  • Maan, S.S., 1987. Interspecific and intergeneric hybridization in wheat. In: E.G. Heyne (Ed.) Wheat and Wheat Improvement. Agronomy Monograph no. 13, 2nd ed., pp. 453–461.

  • Marais G.F. & R.de V. Pienaar, 1977. Hybridization between wheat and rye. II. Variations in the germination of the hybrid kernels with special reference to the effect of the D-genome. Agroplantae 9: 143–148.

    Google Scholar 

  • Martin A. & V. Chapman, 1977. A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res. Commun. 5: 365–368.

    Google Scholar 

  • Martin A. & S. Laguna, 1980. Effects of 5B system on control of pairing in Hordeum chilense × Triticum aestivum hybrids. Z. Pflanzenzüchtg. 85: 122–127.

    Google Scholar 

  • Matsumara S., 1936. Chromosome numbers in male germ cells of pentaploid wheat hybrids. Jap. J. Genet. 12: 104–106.

    Google Scholar 

  • Mayr E., 1963. Animal species and evolution, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Meister N. & N.A. Tjumjakoff, 1928. Rye-wheat hybrids from reciprocal crosses. J. Genet. 20: 233–245.

    Google Scholar 

  • Merker A. 1992. The Triticeae in cereal breeding. Hereditas 116: 277–280.

    Google Scholar 

  • Miller T.E., S.M. Reader & M.D. Gale, 1983. The effect of homoeologous group 3 chromosomes on chromosome pairing and crossability in Triticum aestivum. Canad. J. Genet. Cytol. 25: 634–641.

    Google Scholar 

  • Milo J., A. Levy, G. Ladizinsky & D. Palevitch, 1988. Phylogenetic and genetic studies in Papaver section Oxytona: cytogenetics, isozyme analysis and chloroplast DNA variation. Theor. Appl. Genet. 75: 795–802.

    Google Scholar 

  • Minhong G. & G. Liang, 1985. The crossability between Triticum aestivum L. × Agropyron intermedium (Host) Beauv. and cytological investigations of the hybrids. J. Jiangsu Agri. Coll. 6: 29–34.

    Google Scholar 

  • Morrison, L.A., 1993. Triticum-Aegilops systematics: Taking an integrative approach. In: A.B. Damania (Ed.) Biodiversity and wheat improvement. John Wiley & Sons, pp. 59–66.

  • Mujeeb-Kazi, A., 1993. Interspecific and intergeneric hybridization in the Triticeae for wheat improvement. In: A.B. Damania (Ed.) Biodiversity and wheat improvement. John Wiley & Sons, pp. 95–102.

  • Mujeeb-Kazi A. & M. Bernard, 1982. Somatic chromosome variations in backeross-1 progenies from intergeneric hybrids involving some Triticeae. Cereal Res. Commun. 10: 41–45.

    Google Scholar 

  • Mujeeb-Kazi A. & M. Bernard, 1985. Cytogenetics of intergenerie Elymus canadensis × Triticum aestivum hybrids (n=5×=35, SHABD) and their backcross progenies with T. aestivum. Z. Pflanzenzüchtg. 95: 50–62.

    Google Scholar 

  • Mujeeb-Kazi A. & G. Kimber, 1985. The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res. Commun. 13: 111–124.

    Google Scholar 

  • Mujeeb-Kazi A. & R. Rodriguez, 1981. An intergeneric hybrid of Triticum aestivum × Elymus giganteus. J. Hered. 72: 253–256.

    Google Scholar 

  • Mujeeb-Kazi A., S. Roldan, D.Y. Suh, L. Sitch & S. Farooq, 1987. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species. Genome 29: 537–553.

    Google Scholar 

  • Mujeeb-Kazi A., S. Roldan, D.Y. Suh, N. Ter-Kuile & S. Farooq, 1989. Production and cytogenetics of Triticum aestivum L. hybrids with some rhizomatous Agropyron species. Theor. Appl. Genet. 77: 162–167.

    Google Scholar 

  • Muramatsu, M., S. Kaneta, R. Ikeda, T. Uetsuki & K. Takahashi, 1983. Hybridization of Japanese indigenous Agropyron (Roegneria) species with hexaploid wheat and cytogenetics of some of the F1, BC1 and amphiploid plants. 6th Int. Wheat Genet. Symp. pp. 1041–1048.

  • Nakajima G., 1952. Cytological studies on intergeneric F1 hybrid between Triticum and Secale with special reference to the number of bivalents in meiosis of PMC's. Cytologia 17: 144–155.

    Google Scholar 

  • Nakamura H., 1966. Biochemistry of cross-incompatibility failure of hybrid seed development. Seiken Zihô 18: 49–54.

    Google Scholar 

  • Nevski S.A., 1934. Hordeae Benth. Flora URSS 2: 469–579.

    Google Scholar 

  • Nishiyama I. & N. Inomata, 1966. Embryological studies on crossincompatibility between 2× and 4× in Brassica. Jap. J. Genet. 41: 27–42.

    Google Scholar 

  • Oettler G., 1982. Effect of parental genotype on crossability and response to colchicine treatment in wheat-rye hybrids. Z. Pflanzenzüchtg. 88: 322–330.

    Google Scholar 

  • Ohkawa Y., K. Snenaga & T. Ogawa, 1992. Production of haploid wheat plants through pollination of sorghum pollen. Jap. J. Breed. 42: 891–894.

    Google Scholar 

  • Ozgen M., 1985. The meiotic analysis and morphological characters of the hybrid Triticum aestivum L. var. delfii Köm × Aegilops triaristata Willd. Wheat Info Serv. 60: 1–4.

    Google Scholar 

  • Percival J., 1921. The wheat plant-a monograph. Duckworth and Co., London.

    Google Scholar 

  • Percy R.G., 1986. Effects of environment upon ovule abortion in interspecific F1 hybrids and single species cultivars of cotton. Crop Sci. 26: 938–942.

    Google Scholar 

  • Pershina L.A., O.M. Numerova, L.I. Belova, E.P. Devyatkina & V.K. Shumny, 1988. Fertility in barley × wheat hybrids H. geniculatum All × T. aestivum L., their regenerants and hybrid progeny of backcrosses to T. aestivum L. Cereal Res. Commun. 16: 157–163.

    Google Scholar 

  • Petrova, K.A., 1960. Hybridization between wheat and Elymus. In: N.V. Tsitsin (Ed.) Wide Hybridization in plants, Published for the NSF, Washington, DC and the Dept of Agri by the Israel program for scientific translations, pp. 226–237.

  • Pickersgill B., 1993. Interspecific hybridization by sexual means. In: M.D. Hayward, N.O. Bosemark & I.J. Romagosa (Eds) Plant Breeding: principles and prospects, Chapman and Hall, London, pp. 63–78.

    Google Scholar 

  • Pienaar R. de V., 1981. Genome relationships in wheat × Agropyron distichum (Thumb.) Beauv. hybrids. Z. Pflanzenzüchtg 87: 193–212.

    Google Scholar 

  • Plourde A., A. Comeau & C.A. St-Pierre, 1992. Barley yellow dwarf virus resistance in Triticum aestivum × Leymus angustus hybrids. Plant Breeding 108: 97–103.

    Google Scholar 

  • Plourde A., A. Comeau, G. Fedak & C.A. St-Pierre, 1989a. Production and cytogenetics of Triticum aestivum × Leymus innovatus. Theor. Appl. Genet. 78: 436–444.

    Google Scholar 

  • Plourde A., A. Comeau, G. Fedak & C.A. St-Pierre, 1989b. Intergenetic hybrids of Triticum aestivum × Leymus multicaulis. Genome 32: 282–287.

    Google Scholar 

  • Plourde A., G. Fedak, C.A. St-Pierre & A. Comeau, 1990. A novel intergeneric hybrid in the Triticeae: Triticum aestivum × Psathyrostachys j juncea. Theor. Appl. Genet. 79: 45–48.

    Google Scholar 

  • Powers J.B., E.M. Frearson, C. Hayward, D. George, P.K. Evans, S.F. Berry & E.C. Cocking, 1976. Somatic hybridization of Petunia hybrida × P. parodii. Nature 263: 500–502.

    Google Scholar 

  • Raghavan V., 1980. Embryo culture. Int. Rev. Cytol. Suppl. 11B: 209–240.

    Google Scholar 

  • Reed S.M. & G.B. Collins, 1978. Interspecific hybrids in Nicotiana through in vitro culture of fertilized ovules J. Hered. 69: 311–315.

    Google Scholar 

  • Riera-Lizarazu O. & A. Mujeeb-Kazi, 1993. Polyhaploid production in the Triticeae: wheat × Tripsacum cross. Crop Sci. 33: 973–976.

    Google Scholar 

  • Riera-Lizarazu O., H.W. Rines & R.L. Phillips, 1992. Retention of maize chromosomes in haploid oat plants from oat × maize crosses. Agron. Abst. 84: 112.

    Google Scholar 

  • Riley R. & C.N. Law, 1984. Chromosome manipulation in plant breeding: progress and prospects. Stadler Genet. Symp 16: 301–322.

    Google Scholar 

  • Sastri D.C. & N. Mallikarjuna, 1984. Techniques for overcoming incompatibility in wide crosses. Intercenter seminars in IARCs and biotechnology. IRRI, Los Banos, Phillipines.

    Google Scholar 

  • Sehulz-Schaeffer J., 1970. A possible source of cytoplasmic male sterility in intermediate wheatgrass, Agropyron intermedium (Host) Beauv. Crop Sci. 10: 204–205.

    Google Scholar 

  • Schwarzacher T., K. Anamthawat-Jonson, G.E. Harrison, A. Islam, J.Z. Jia, I.P. King, A.R. Leitch, T.E. Miller, S.M. Reader, W.J. Rogers, M. Shi & J.S. Heslop-Harrison, 1991. Genome in situ hybridization to identify alien chromosome segments in wheat. Theor. Appl. Genet. 84: 778–786.

    Google Scholar 

  • Sears E.R., 1944. Inviability of intergeneric hybrids involving Triticum monococcum and T. aegilopoide. Genetics 29: 113–127.

    Google Scholar 

  • Sears, E.R., 1981. Transfer of alien genetic material to wheat. In: L.T. Evans & W.J. Peacock (Eds) Wheat science-Today and tomorrow. Cambridge Univ. Press, pp. 75–89.

  • Sharma H.C., 1989. New hybrids between wheat and Agropyron. IV. Transmission of telo and whole chromosomes, and fertility of alien addition lines of Agropyron trachycaulum and A. ciliare in wheat. Wheat Info Service 69: 1–4.

    Google Scholar 

  • Sharma H.C., & P.S. Baenziger, 1986. Production, morphology and cytogenetic analysis of Elymus caninus (Agropyron caninum) × Triticum aestivum F1 hybrids and backcross derivatives. Theor. Appl. Genet. 71: 750–756.

    Google Scholar 

  • Sharma H.C. & B.S. Gill, 1982. Variability in spikelet disarticulation in Agropyron species. Canad. J. Bot. 60: 1771–1775.

    Google Scholar 

  • Sharma H.C. & B.S. Gill, 1983a. Current status of wide hybridization in wheat. Euphytica 32: 17–31.

    Google Scholar 

  • Sharma H.C. & B.S. Gill, 1983b. New hybrids between wheat and Agropyron. 2. Production, morphology abd cytogenetic analysis of F1 hybrids and backcross derivatives. Theor. Appl. Genet. 66: 111–121.

    Google Scholar 

  • Sharma H.C. & H.W. Ohm, 1990. Crossability and embryo rescue enhancementin wide crosses between wheat and three Agropyron species. Euphytica 49: 209–214.

    Google Scholar 

  • Sharma H.C., H.W. Ohm, R.M. Lister, J.E. Foster & R.H. Shukle, 1989. Response of wheatgrasses and wheat × wheatgrass hybrids to barley yellow dwarf virus. Theor. Appl. Genet. 77: 369–374.

    Google Scholar 

  • Sharma H.C. & J.G. Waines, 1981. Attempted gene transfer from tetraploids to diploids in Triticum. Canad. J. Genet. Cytol. 23: 639–645.

    Google Scholar 

  • Shepherd, K.W. & A. Islam, 1981. Wheat: barley hybrids-the first eighty years. In: L.T. Evans & W.J. Peacock (Eds) Wheat science -Today and tomorrow. Cambridge Univ. Press, pp. 107–128.

  • Shiela V.K., J.P. Moss, C.L.L. Gowda & H.A. Rheenen, 1992. Interspecific hybridization between Cicer arietinum and Cicer species. Int. Chickpea Newslett 27: 11–13.

    Google Scholar 

  • Shivanna K.R., 1982. Pollen-pistil interaction and control fertilization. In: B.M. Johri (Ed) Experimental embryology of vascular plants. Varosu Pub. House, New Delhi, pp. 131–174.

    Google Scholar 

  • Singh J., P.S. Sidhu, M.M. Verma, S.S. Gosal & J. Singh, 1993. Wide hybridization in Cajanus. Crop Improv. 20: 27–30.

    Google Scholar 

  • Sirkka A.T.I., G. Varughese, W.H. Pfeiffer & A. Mujeeb-Kazi, 1993. Crossability of tetraploid and hexaploid wheats with ryes for primary triticale production. Euphytica 65: 203–210.

    Google Scholar 

  • Sitch L.A., J.W. Snape & S.J. Firman, 1985. Intrachromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor. Appl. Genet. 70: 309–314.

    Google Scholar 

  • Smith D.C., 1942. Intergeneric hybridization of cereals and other grasses. J. Agri. Res. 64: 33–47.

    Google Scholar 

  • Smith D.C., 1943. Intergeneric hybridization of Triticum and other grasses, principally Agropyron. J. Hered 34: 219–224.

    Google Scholar 

  • Smith E.L., E.E. Sebesta, H.C. Young, H. Pass & D.C. Abbott, 1981. Registration of Payne wheat. Crop Sci. 21: 636.

    Google Scholar 

  • Snape J.W., M.D. Bennett & E. Simpson, 1980. Post-pollination events in crosses of hexaploid wheat with tetraploid Hordeum bulbosum. Z. Pflanzenzüchtg. 85: 200–204.

    Google Scholar 

  • Snape J.W., V. Chapman, J. Moss, C.E. Blanchard & T.E. Miller, 1979. The crossabilities of wheat varieties with Hordeum bulbosum. Heredity 42: 291–298.

    Google Scholar 

  • Stalker H.T., 1980. Utilization of wild species for crop improvement. Adv. Agron. 33: 111–147.

    Google Scholar 

  • Stebbins G.L., 1956. Taxonomy and the evolution of genera, with special reference to the family Gramineae. Evolution 10: 235–245.

    Google Scholar 

  • Stebbins G.L., 1958. The inviability, weakness and sterility of interspecific hybrids. Adv. Genet. 9: 147–215.

    Google Scholar 

  • Thomas B.R. & D. Pratt, 1981. Efficient hybridization between Lycopersicon esculentum and L. peruvianum via embryo callus. Theor. Appl. Genet. 59: 215–219.

    Google Scholar 

  • Thomas J.B., P.J. Kaltsikes & R.G. Anderson, 1981. Relation between wheat-rye crossability and seed set of common wheat after pollination with other species in the Hordeae. Euphytica 30: 121–127.

    Google Scholar 

  • Thompson D.L. & J.E. Grafius, 1950. Cytological observations of the F1 and two backcross generations of Triticum vulgare × Agropyron trichophorum. Agron. J. 42: 298–303.

    Google Scholar 

  • Thompson W.P., 1930. Causes of difference in success of reciprocal interspecific crosses. Am. Nat. 64: 407–421.

    Google Scholar 

  • Tsitsin, N.V., 1933. The Triticum × Agropyron hybrids. Lenin Acad. Agric. Sci. Siberian Inst. Grain Cult. Omsk. 101.

  • Tsitsin N.V. & E.D. Gruzdeva, 1959. Hybrids of Agropyron glaucum Roem et Schult × A. repens (L.). P. B. Bull. Princ. J. and Bot. 33: 53–60.

    Google Scholar 

  • Ushiyama T., T. Shimizu & T. Kuwabara, 1991. High frequency of haploid production of wheat through intergeneric cross with Teosinte. Jap. J. Breed. 41: 353–357.

    Google Scholar 

  • Vershinin A.V., E.A. Salina & S.K. Svitashev, 1992. Is there a connection between genomic changes and wide hybridization? Hereditas 116: 213–217.

    Google Scholar 

  • Veruschkine S.M., 1935. On the hybridization of Triticum and Agropyron. J. Bot. USSR 21: 176–185.

    Google Scholar 

  • Waines, J.G., K.W. Hilu & H.C. Sharma, 1982. Species formation in Aegilops and Triticum. In: J.R. Estes, R.J. Tyrl & J.N. Brunken (Eds) Grasses and grasslands: Systematics and ecology. Univ. Oklahoma Press, pp. 89–108.

  • Wang R., E.E. Barnes & L.L. Cook, 1980. Transfer of wheat streak mosaic virus resistance from Agropyron to homoeologous chromosome of wheat. Cereal Res. Commun. 8: 335–339.

    Google Scholar 

  • Wang R., 1989. Intergeneric hybrids involving perennial Triticeae. Genet. (Life Sci. Adv.) 8: 57–64.

    Google Scholar 

  • Wang R. & C. Hsiao, 1989. Genome relationship between Thinopyrum bessarabicum and Th. elongatum revisited. Genome 32: 802–809.

    Google Scholar 

  • Wang, R., Z.W. Liu & J.G. Carman, 1993. The introduction and expression of apomixis in hybrids of wheat and Elymus rectisetus. 8th Int. Wheat Genet. Symp., Beijing, China (in press).

  • Whelan E.D.P. & R.L. Conner, 1989. Registration of LRS-7–50 wheat germplasm. Crop Sci. 29: 838.

    Google Scholar 

  • Whelan E.D.P. & G.E. Hart, 1988. R spontaneous translocation that transfers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome 30: 289–292.

    Google Scholar 

  • While W.J., 1940. Intergeneric crosses between Triticum and Agropyron. Sci. Agri. 21: 198–232.

    Google Scholar 

  • Wienhues, A., 1973. Translocations between wheat chromosomes and Agropyron chromosomes conditioning rust resistance. 4th Int. Wheat Genet. Symp. pp. 201–207.

  • Williams E.G., G. Maheswaran & J.F. Hutchinson, 1987. Embryo and ovule culture in crop improvement. Pl. Breed. Rev. 5: 181–236.

    Google Scholar 

  • Wu S.H. & C.K. Tsai, 1963. Cytological studies on the intergeneric F1 hybrids between Oryza sativa L. × Pennisetum species. Acta Bot. Sin. 11: 293–307.

    Google Scholar 

  • Yen Y. & D. Liu, 1987. Production, morphology and cytogenetics of intergeneric hybrids of Elymus L. species with Triticum aestivum L. and their backcross derivatives. Genome 29: 689–694.

    Google Scholar 

  • Young, E.C., T.A. Thorpe & C.J. Jensen, 1981. In vitro fertilization and embry culture. In: T.A. Thorpe (Ed) Plant tissue culture and application in agriculture. AP, pp. 253–371.

  • Zeller, F.J. & S.L.K. Hsam, 1983. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. 6th Int. Wheat Genet. Symp., pp. 161–173.

  • Zenkteler M. & W. Nitzsche, 1984. Wide hybridization experiments in cereals. Theor. Appl. Genet. 68: 311–315.

    Google Scholar 

  • Zeven A.C., 1987. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytica 36: 299–319.

    Google Scholar 

  • Zeven A.C. & C.van Heemert, 1970. Germination of pollen of weed rye (Secale segetale L.) on wheat (Triticum aestivum L.) stigmas and the growth of the pollen tubes. Euphytica 19: 175–179.

    Google Scholar 

  • Zeven A.C. & C.J. Keijzer, 1980. The effect of the number of B chromosomes in rye on its crossability with wheat. Cereal Res. Commun. 8: 491–494.

    Google Scholar 

  • Zhao Y.H. & G. Kimber, 1984. New hybrids with D genome wheat relatives. Genetics 106: 509–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, H.C. How wide can a wide cross be?. Euphytica 82, 43–64 (1995). https://doi.org/10.1007/BF00028709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028709

Key words

Navigation