Skip to main content
Log in

Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Transgenic alfalfa plants expressinBacillus licheniformis alpha-amylase and mangaese-dependent lignin peroxidase (Mn-P) from Phanerochaete chrysosporium were produced using the Agrobacterium tumefaciens transformation system. In each case, there was a range of expression of the introduced gene among independent transgenic plants. Plants producing alpha-amylase showed no alteration of phenotype. Production of Mn-P in alfalfa, howeven, in most cases adversely affected plant growth and development. Affected plants were stunted with yellowing foliage, but survived and produced seed. Results from field trials showed that Mn-P production in transgenic alfalfa reduced dry matter yield and plant height. The extent of these symptoms and yield reduction was, for the most part, related to the level of foreign protein production as estimated by Western analysis. Field data from transgenic plants expressing alpha-amylase showed that there was no effect of foreign protein production on plant performance. Expression of Mn-P was shown to segregate in sexual progeny derived from transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Mn-P:

manganese-dependent lignin peroxidase

References

  • Austin, S., R.G. Koegel, D. Matthews, M. Shahan, R.J. Straub & R. Burgess, 1994. Production of industrial enzyme in transgenic alfalfa. Annals NY Acad. Sci. In Press.

  • Bagga S., D. Sutton, J.D. Kemp & C. Sengupta-Gopalan, 1992. Constitutive expression of the β-phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue. Plant Mol. Biol. 10: 951–958.

    Article  Google Scholar 

  • Bingham E.T., 1991. Registration of alfalfa hybrid Regen-SY germplasm for tissue culture and transformation research. Crop Sci. 31: 1098.

    Google Scholar 

  • Bingham E.T., L.V. Hurley, D.M. Kaatz & J.W. Saunders, 1975. Breeding alfalfa which regenerates from callus tissue in culture. Crop Sci. 15: 719–721.

    Google Scholar 

  • Bradford M.M., 1976. A rapid and sensitive method for the quantification of micro-organism quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brown D.C. & A. Atanassov, 1985. Role of genetic background in somatic embryogenesis in Medicago. Plant Cell Tissue Organ Culture 4: 107–114.

    Article  Google Scholar 

  • Chabaud M., J.E. Passiatore, F. Cannon & V. Buchanan-Wollaston, 1988. Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep. 7: 512–516.

    Article  CAS  Google Scholar 

  • Comai L., P. Moran & D. Maslyar, 1990. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol. Biol. 15: 373–381.

    Article  PubMed  CAS  Google Scholar 

  • D'Halluin K., J. Botterman & W.D. Greef, 1990. Engineering of herbicide-resistant alfalfa and evaluation under field conditions. Crop Sci. 30: 866–871.

    Google Scholar 

  • DeZoeten G.A., J.R. Penswick, M.A. Horisberger, P. Ahl, M. Schultze & T. Hohn, 1989 The expression, localization and effect of a human interferon in plants. Virology 172: 213–222.

    Article  CAS  Google Scholar 

  • Düring K., S. Hippe, F. Kreuzaler & J. Schell, 1990. Synthesis and self-assembly of a functional monoclonal antibody in trasgenic Nicotiana tobacum. Plant Mol. Biol. 15: 281–293.

    Article  PubMed  Google Scholar 

  • Glenn J.K. & M.H. Gold, 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignindegrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem & Biophys 242 (2): 329–341.

    Article  CAS  Google Scholar 

  • Hiatt A., R. Cafferkey & K. Bowdish, 1989. Production of antibodies in transgenic plants. Nature 342: 76–78.

    Article  PubMed  CAS  Google Scholar 

  • Hill K.K., N. Jarvis-Eagan, E. Halk, K. Krahn, L. Liao, R. Mathewson, D. Merlo, S. Nelson, K. Rashka & L. Loesch-Fries, 1991. The development of virus-resistant alfalfa, Medicago sativa L. Bio/Technology 9: 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Horsch R.B., J.E. Fry, N.L. Hoffman, D. Eicholtz, S.G. Rogers & R.T. Farley, 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Krebbers E. & J. Vandekerckhove, 1990. Production of peptides in plant seeds. Trends Biotech. 8: 1–3.

    Article  CAS  Google Scholar 

  • Lee I., A. Bleeker & R.M. Amasino, 1993. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol. Gen. Genet. 237: 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Mason H.S., F.D. Guerrero, J.S. Boyer & J.E. Mullet, 1988. Proteins homologous to leaf glycoproteins are abundant in stems of dark-grown soy bean seedlings. Analysis of proteins and cDNAs. Plant Mol. Biol. 11: 845–856.

    Article  CAS  Google Scholar 

  • Mathews D., S. Austin, J. Monorama, J. Will, M. Shahan, R. Amasino & R. Burgess, 1993. Expression of fungal lignin degrading enzymes in plants. Plant Physiol. (Supp.) 102: 960.

    Google Scholar 

  • McBride K.E. & K.R. Summerfeldt, 1990. Improved binary vectors for Agrobacterium mediated plant transformation. Plant Mol. Biol. 14: 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Murashige T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Pease E.A., A. Andrawis & M. Tien, 1989. Manganese-dependent peroxidase from Phanerochaete chrysosporium. J. Biol. Chem. 264: 13531–13535.

    PubMed  CAS  Google Scholar 

  • Pen J., L. Molendijk, W.J. Quax, P.C. Sijmons, A.J.J.van Ooyen, P.J.M.van den Elzen, K. Rietveld & A. Hoekema, 1992. Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquification. Bio/Technology 10: 292–296.

    Article  PubMed  CAS  Google Scholar 

  • Reid R.A., M.C. John & R.M. Amasino, 1988. Deoxyribonuclease I sensitivity of the T-DNA ipt gene is associated with gene expression. Biochemistry 27: 5748–5754.

    Article  PubMed  CAS  Google Scholar 

  • Saito N., 1973. A thermophilic extracellular α-amylase from Bacillus licheniformis. Arch. Biochem. Biophys. 155: 290–298.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder H.E., M.R.I. Khan, W.R. Knibb, D. Spencer & T.J.V. Higgins, 1991. Expression of a chicken ovalbumin gene in three lucerne cultivars. Aust. J. Plant Physiol. 18: 495–505.

    Article  CAS  Google Scholar 

  • Schwardt E., 1991. Production and use of enzymes degrading starch and some other polysaccharides. Food Biotechnol. 4: 337–351.

    Google Scholar 

  • Shahin E.A., A. Spielmann, K. Sukhapinda, R.G. Simpson & M. Yashar, 1986. Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop Sci. 26: 1235–1239.

    Article  CAS  Google Scholar 

  • Sijmons P.C., B.M.M. Dekker, B. Schrammeijer, T.C. Verwoerd, P.J.M.Van den Elzen & A. Hoekema, 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8: 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove J., J.Van Damme, M.Van Lijsebettens, J. Botterman, M.De Block, M.Van de Wiele, A.De Clercq, J. Leemans, M. Montagu & E. Krebbers, 1989. Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Bio/Technology 7: 929–932.

    Article  CAS  Google Scholar 

  • Yuuki T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagashi & S. Udaka, 1985. Complete nucleotide sequence of a gene coding for heat-and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquifying alpha-amylase deduced from the DNA sequences. J. Biochem. 98: 1147–1156.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, S., Bingham, E.T., Mathews, D.E. et al. Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85, 381–393 (1995). https://doi.org/10.1007/BF00023971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023971

Key words

Navigation