Skip to main content
Log in

Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss. ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Two alleles, Glu-A1r encoding high-molecular-weight (HMW) glutenin subunits 39+40 and Glu-A1s encoding HMW glutenin subunits 41+42, were introgressed to bread wheat (Triticum aestivum L.) cv. Sicco from two accessions of T. boeoticum Boiss. ssp. thaoudar (A genome species, 2n=2x=14). Alleles at Glu-A1 in current commercial bread wheats encode zero or one subunit, and alleles at the homoeoloci Glu-B1 and Glu-D1 encode a maximum of two subunits; hence the maximum number of subunits found in commercial wheats is five, whereas the lines incorporating Glu-A1r and Glu-A1s carry six. Using near-isogenic lines, the current results demonstrated that the introduction of Glu-A1r resulted in diminished dough stickiness and improved stability during mixing compared with Glu-A1a encoding subunit 1, and a small improvement in gluten strength as shown by the SDS- sedimentation test. The introduction of Glu-A1a also resulted in a small improvement in gluten strength predicted by the SDS-sedimentation test. Thus the alleles are of potential value in breeding programmes designed to improve bread-making quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Association of Cereal Chemists, 1962. Cereal Laboratory Methods, 7th Edn., AACC, St. Paul, Minnesota.

    Google Scholar 

  • Carrillo, J.M., M. Rousset, C.O. Qualset & D.D. Kasarda, 1990. Use of recombinant inbred lines of wheat for study of associations of high-molecular-weight glutenin alleles to quantitative traits. 1. Grain yield and quality prediction tests. Theor. Appl. Genet. 79: 321-330.

    Google Scholar 

  • Ciaffi, M., D. Lafiandra, T. Turchetta, S. Ravaglia, H. Bariana, R. Gupta & F. MacRitchie, 1995. Breadmaking potential of durum wheat lines expressing both X-and Y-type subunits at the Glu-A1 locus. Cereal Chem. 72: 465-469.

    Google Scholar 

  • Ciaffi, M., C. Tomassini, E. Porceddu & S. Benedettelli, 1990. Utilization of Triticum turgidum spp. dicoccoides for the improvement of the grain quality in durum wheat. In: W. Bushuk & R. Tkachuk (Eds.), Proc. 4th Int. Workshop Gluten Proteins, pp. 672-687. AACC, St. Paul, Minnesota.

    Google Scholar 

  • Collins, T.H., 1982. In: The Master Baker's Book of Breadmaking, pp. 1-46. National Association of Master Bakers, Turret Press, London.

    Google Scholar 

  • Dhaliwal, A.S., D.J. Mares, D.R. Marshall & J.H. Skerritt, 1988. Protein composition and pentosan content in relation to dough stickiness of 1B/1R translocation wheats. Cereal Chem. 65: 143-149.

    Google Scholar 

  • Dhaliwal, A.S. & F. MacRitchie, 1990. Contributions of protein fractions to dough handling properties of wheat-rye translocation cultivars. J. Cereal Sci. 12: 113-122.

    Google Scholar 

  • Dick, J.W. & J.S. Quick, 1983. A modified screening test for rapid estimation of gluten strength in early generation durum wheat breeding lines. Cereal Chem. 60: 315-318.

    Google Scholar 

  • Faridi, M.N.I., 1988. Genetical studies of grain protein and developmental characters in wheat. PhD thesis, University of Cambridge.

  • Forde, J., J.-M. Malpica-Romero, N.G. Halford, P.R. Shewry, O.D. Anderson, F.C. Greene & B.J. Miflin, 1985. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum). Nucleic Acids Res. 13: 6817-6832.

    Google Scholar 

  • Genstat 5 Committee of the Statistics Department, Rothamsted Experimental Station, 1987. Genstat 5 Reference Manual, Oxford Science Publications.

  • Graybosch, R.A., C.J. Peterson, L.E. Hansen & P.J. Mattern, 1990. Relationship between protein solubility characteristics, 1BL/1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germplasm. Cereal Chem. 67: 342-349.

    Google Scholar 

  • Gupta, R.B., F. MacRitchie, K.W. Shepherd & F. Ellison, 1990. Relative contribution of LMW and HMW glutenin subunits to dough strength and dough stickiness of bread wheat. In: W. Bushuk & R. Tkachuk (Eds.), Proc. 4th Int. Workshop Gluten Proteins, pp. 71-80. AACC, St. Paul, Minnesota.

    Google Scholar 

  • Harberd, N.P., D. Bartels & R.D. Thompson, 1986. DNA restriction fragment variation in the gene family encoding HMW glutenin subunits of wheat. Biochem. Genet. 24: 579-596.

    Google Scholar 

  • Johansson, E., P. Henriksson, G. Svensson & W.K. Heneen, 1993. Detection, chromosomal location and evaluation of the functional value of a novel high Mγ glutenin subunit found in Swedish wheats. J. Cereal Sci. 17: 237-245.

    Google Scholar 

  • Johansson, E. & G. Svensson, 1995. Contribution of the high molecular weight subunit 21* to breadmaking quality of Swedish wheats. Cereal Chem. 72: 287-290.

    Google Scholar 

  • Kent-Jones, D.W. & A.J. Amos, 1967. Modern Cereal Chemistry, 6th Ed., pp. 330-337. Food Trade Press, London.

    Google Scholar 

  • Lafiandra, D., R. D'Ovidio, E. Porceddu, B. Margiotta & G. Colaprico, 1993. New data supporting high molecular weight glutenin subunit-5 as the determinant of quality differences among the pairs 5+10 vs 2+12. J. Cereal Sci. 18: 197-205.

    Google Scholar 

  • Law, C.N. & A.F. Krattiger, 1987. Genetics of grain quality in wheat. In: I.D. Morton (Ed.), Cereals in a European context, 1st European Conference on Food Science and Technology, pp. 33-47. Weinheim, New York: VCH, Chichester: Horwood, 1987.

    Google Scholar 

  • Lawrence, G.J., F. MacRitchie & C.W. Wrigley, 1988. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal Sci. 7: 109-112.

    Google Scholar 

  • Margiotta, B., M. Urbano, G. Colaprico, E. Johansson, F. Buonocore, R. D' Ovidio & D. Lafiandra, 1995. Bread wheat lines with both x-and y-type subunits at the Glu-A1 locus. Proceedings of the Workshop 'Wheat kernel proteins. Molecular and functional aspects', S. Martino al Cimino, 28–30 Sept. 1994, pp. 135-138, Università della Tuscia, Viterbo, Italy.

    Google Scholar 

  • Martin, D.J. & B.G. Stewart, 1986. Dough mixing properties of a wheat-rye derived cultivar. Euphytica 35: 225-232.

    Google Scholar 

  • Maystrenko, O.I., A.V. Troshina & M.F. Ermakova, 1973. Chromosomal location of genes for flour quality in wheat using ditelosomic lines. In: E.R. Sears & L.M.S. Sears (Eds.), Proc. 4th Int. Wheat Genet. Symp., pp. 51-66. Agricultural Experiment Station, College of Agriculture, University of Missouri.

  • McIntosh, R.A., G.E. Hart & M.D. Gale, 1995. Catalogue of gene symbols for wheat. In: Z.S. Li & Z.Y. Xin (Eds.), Proc. 8th Int. Wheat Genet. Symp., pp. 1333-1500. China Agricultural Scientech Press, Beijing.

    Google Scholar 

  • Nevo, E. & P.I. Payne, 1987. Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel. 1. Geographical patterns and ecological predictability. Theor. Appl. Genet. 74: 827-836.

    Google Scholar 

  • Payne, P.I., 1986. Varietal improvement in the bread-making quality of wheat: contributions from biochemistry and genetics, and future prospects from molecular biology. In: BCPC Mono. No. 34, Biotechnology and Crop Improvement and Protection, pp. 69-81.

  • Payne, P.I., 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Ann. Rev. Plant Physiol. 38: 141-153.

    Google Scholar 

  • Payne, P.I., K.G. Corfield & J.A. Blackman, 1979. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theor. Appl. Genet. 55: 153-159.

    Google Scholar 

  • Payne, P.I., K.G. Corfield, L.M. Holt & J.A. Blackman, 1981b. Correlations between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 32: 51-60.

    Google Scholar 

  • Payne, P.I., L.M. Holt, K. Harinder, D.P. MaCartney & G.J. Lawrence, 1987a. The use of near-isogenic lines with different HMW glutenin subunits in studying bread-making quality and glutenin structure. In: R. Lásztity & F. Békés (Eds.), Proc. 3rd Int. Workshop Gluten Proteins, pp. 216-226. World Scientific, Singapore.

    Google Scholar 

  • Payne, P.I., L.M. Holt, E.A. Jackson & C.N. Law, 1984. Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Phil. Trans. R. Soc. Lond. B 304: 359-371.

    Google Scholar 

  • Payne, P.I., L.M. Holt & C.N. Law, 1981a. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. The allelic variation in subunits among varieties of wheat (Triticum aestivum). Theor. Appl. Genet. 60: 229-236.

    Google Scholar 

  • Payne, P.I. & G.J. Lawrence, 1983. Catalogue of alleles for the complex gene loci Glu-A1, Glu-B1 and Glu-D1 which code for the high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Comm. 11: 29-35.

    Google Scholar 

  • Payne, P.I., M.A. Nightingale, A.F. Krattiger & L.M. Holt, 1987b. The relationship between glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40: 51-65.

    Google Scholar 

  • Pogna, N.E., F. Mellini & A. Dal Balin Peruffo, 1987. Glutenin subunits of Italian common wheats of good bread-making quality and comparative effects of high molecular weight glutenin subunits 2 and 5, 10 and 12 on flour quality. In: B. Borghi (Ed.), Agriculture: Hard Wheat: Agronomic, Technological, Biochemical and Genetical Aspects (C.E.C. Rep. EUR 11172 EN), pp. 53-69. Commission of the European Communities, Brussels.

    Google Scholar 

  • Rogers, W.J., P.I. Payne & K. Harinder, 1989b. The HMW glutenin subunit and gliadin compositions of German-grown wheat varieties and their relationship with bread-making quality. Plant Breeding 103: 89-100.

    Google Scholar 

  • Rogers, W.J., Payne, P.I., T.E., Miller, L.M., Holt, C.N. Law, E.J. Sayers & J.A. Seekings, 1989a. Introduction to hexaploid wheat and assessment for bread-making quality of a Glu-A1 locus from T. thaoudar encoding two high-molecular-weight subunits of glutenin. In: Proc. EUCARPIA Congr., Part II 27-3. Gottingen Th. Mann Publishers: Gelsenkirchen-Buer, Germany.

    Google Scholar 

  • Rogers, W.J., J.M. Rickatson, E.J. Sayers & C.N. Law, 1990. Dosage effects of chromosomes of homoeologous groups 1 and 6 upon bread-making quality in hexaploid wheat. Theor. Appl. Genet. 80: 281-287.

    Google Scholar 

  • Rogers, W.J., P.I. Payne, J.A. Seekings & E.J. Sayers, 1991. Effect of bread-making quality of x-type and y-type high molecular weight subunits of glutenin. J. Cereal Sci. 14: 209-221.

    Google Scholar 

  • Saponaro, C., N. E. Pogna, R. Castagna, M. Pasquini, P. Cacciatori & R. Redaelli, 1995. Allelic variation at the Gli-A1 m, Gli-A2m and Glu-A1 m loci and breadmaking quality in diploid wheat Triticum monococcum. Genet. Res., Camb. 66: 127-137.

    Google Scholar 

  • Sozinov, A.A. & F.A. Poperelya, 1980. Genetic classification of prolamines and its use for plant breeding. Ann. Technol. Agric. 29: 229-245.

    Google Scholar 

  • Waines, J.G. & P.I. Payne, 1987. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor. Appl. Genet. 74: 71-76.

    Google Scholar 

  • Wang, G., J.W. Snape, H. Hu & W.J. Rogers, 1993. The high-molecular-weight glutenin subunit compositions of Chinese bread wheat varieties and their relationship with bread-making quality. Euphytica 68: 205-212.

    Google Scholar 

  • Welsh, J.R. & E.R. Hehn, 1964. The effect of chromosome 1D on hexaploid flour quality. Crop Sci. 4: 320-323.

    Google Scholar 

  • Worland, A.J., C.N. Law & W.M. Li, 1989. The location of genes depressing yield associated with the transfer of eyespot resistance from Aegilops ventricosa. Annual Report of the AFRC Plant Science Research Programme, pp. 7-8. Institute of Plant Science Research, John Innes Institute and Sainsbury Laboratory.

  • Zeller, F.J. & L.K. Hsam, 1983. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: S. Sakamoto (Ed.), Proc. 6th Int. Wheat Genet. Symp., pp. 161-173. Kyoto.

  • Zeller, F.J., G. Gunzel, G. Fischbeck, P. Gerstenkorn & D. Weipert, 1982. Veranderungen der Backeigenschaften des Weizens durch die Weizen-Roggen-Chromosomentranslokation 1B/1R. Getreide, Mehl und Brot 36: 141-143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, W., Miller, T., Payne, P. et al. Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T. boeoticum Boiss. ssp. thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin. Euphytica 93, 19–29 (1997). https://doi.org/10.1023/A:1002991206350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002991206350

Navigation