Skip to main content
Log in

Occasional loss of expression of phosphinothricin tolerance in sexual offspring of transgenic oilseed rape (Brassica napus L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The commercial and economic value of genetically modified crops is determined by a predictable, consistent and stable transmission and expression of the transgenes in successive generations. No gene inactivation is expected after selfings or crosses with non-transformed plants of homozygous transgenic oilseed rape plants if the expression of the transgene in homozygous or hemizygous nature in such plants is stable. The segregation ratios of phosphinothricin (PPT) tolerance in successive generations of selfings and mutual crosses of a few independent transgenic PPT-tolerant oilseed rape plants indicated a dominant, monogenic inheritance. In within-variety and between-variety crosses no transgene inactivation was observed. However, after selfings and backcrosses with non-transgenic oilseed rape infrequent loss of the expression of the PPT tolerance transgene was observed independent from its homozygous or hemizygous nature. Molecular analysis of PPT-susceptible plants showed that the loss of expression was due to gene inactivation and not to the absence of the transgene. Methylation and co-suppression are mechanisms that might cause reduced or even loss of expression of the transgene in later generations. The implications of this observation for seed multiplication of varieties and breeding activities with transgenic oilseed rape are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.P., 1969. Differential staining of aborted and nonaborted pollen. Stain Techn 44: 117–122.

    PubMed  CAS  Google Scholar 

  • Baranger, A., A.M. Chèvre, F. Eber & M. Renard, 1995. Effect of oilseed rape genotype on the spontaneous hybridization rate with a weedy species: an assessment of transgene dispersal. Theor Appl Genet 91: 956–963.

    Article  CAS  Google Scholar 

  • Block, M. de, J. Botterman, M. Vandewiele, J. Dockx, C. Thoen, V. Gosselé, N. Rao Movva, C. Thompson, M. van Montagu & J. Leemans, 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518.

    PubMed  Google Scholar 

  • Cherdshewasart, W., G.B. Gharti-Chhetri, M.W. Saul, M. Jacobs & I. Negrutiu, 1993. Expression instability and genetic disorders in transgenic Nicotiana plumbaginifolia Viv. plants. Transgenic Res 2: 307–320.

    Article  CAS  Google Scholar 

  • Conner, A.J. & M.C. Christey, 1994. Plant breeding and seed marketing options for the introduction of transgenic insect-resistant crops. Biocontrol Sci Tech 4: 463–473.

    Article  Google Scholar 

  • Conner, A.J., L. Mlynárová & J.P. Nap. Meiotic stability of transgene expression is unaffected by flanking matrix-associated regions. Submitted.

  • Dale, P.J. & J.A. Irwin, 1995. The release of transgenic plants from containment, and the move towards their widespread use in agriculture. Euphytica 85: 425–431.

    Article  Google Scholar 

  • Deroles, S.C. & R.C. Gardner, 1988a. Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol 11: 355–364.

    Article  CAS  Google Scholar 

  • Deroles, S.C. & R.C. Gardner, 1988b. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol 11: 365–377.

    Article  CAS  Google Scholar 

  • Finnegan, J. & D. McElroy, 1994. Transgene inactivation: plants fight back! Bio/Techn. 12: 883–888.

    Article  Google Scholar 

  • Heberle-Bors, E., B. Charvat, D. Thompson, J.P. Schernthaner, A. Barta, A.J.M. Matzke & M.A. Matzke, 1988. Genetic analysis of T-DNA insertions into the tobacco genome. Plant Cell Rep 7: 571–574.

    Article  CAS  Google Scholar 

  • Ingelbrecht, I., H. Van Houdt, M. Van Montagu & A. Depicker, 1994. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci USA 91: 10502–10506.

    Article  PubMed  CAS  Google Scholar 

  • James, D.J., A.J. Passey & S.A. Baker, 1995. Transgenic apples display stable gene expression in the fruit and Mendelian segregation of the transgenes in the R1. Euphytica 85: 109–112.

    Article  Google Scholar 

  • Jorgensen, R., 1990. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechn 8: 340–344.

    Article  CAS  Google Scholar 

  • Kilby, N.J., H.M.O. Leyser & I.J. Furner, 1992. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol Biol 20: 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Koncz, C. & J. Schell, 1986. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383–396.

    Article  CAS  Google Scholar 

  • Linn, F., I. Heidmann, H. Saedler & P. Meyer, 1990. Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of number of integrated gene copies and state of methylation. Mol Gen Genet 222: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M.A. & A.J.M. Matzke, 1991. Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol Biol 16: 821–830.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M.A., M. Primig, J. Trnovsky & A.J.M Matzke, 1989. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8: 643–649.

    PubMed  CAS  Google Scholar 

  • Matzke, M.A., F. Neuhuber & A.J.M. Matzke, 1993. A variety of epistatic interactions can occur between partially homologous transgene loci brought together by sexual crossing. Mol Gen Genet 236: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Metz, P.L.J., J.P. Nap & W.J. Stiekema, 1995. Hybridization of radish (Raphanus sativus L.) and oilseed rape (Brassica napus L.) through a flower-culture method. Euphytica 83: 159–168.

    Article  CAS  Google Scholar 

  • Meyer, P., 1995. Variation of transgene expression in plants. Euphytica 85: 359–366.

    Article  CAS  Google Scholar 

  • Meyer, P., F. Linn, I. Heidmann, H. Meyer zu Altenschildesche, I. Niedenoff & H. Saedler, 1992. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231: 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Mittelsten Scheid, O.M., J. Paszkowski & I. Potrykus, 1991. Reversible inactivation of a transgene in Arabidopsis thaliana. Mol Gen Genet 228: 104–112.

    PubMed  CAS  Google Scholar 

  • Müller, A.J., R.R. Mendel, J. Schiemann, C. Simoens & D. Inzé, 1987. High meiotic stability of a foreign gene introduced into tobacco by Agrobacterium-mediated transformation. Mol Gen Genet 207: 171–175.

    Article  PubMed  Google Scholar 

  • Napoli, C., C. Lemieux & R. Jorgensen, 1990. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in plants. Plant Cell 2: 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani, M.P., T. Smits & C.H. Häenisch ten Cate, 1993. Differential methylation and expression of the ß-glucuronidase and neomycin phosphotransferase genes in transgenic potato cv Bintje. Plant Sci 88: 73–81.

    Article  CAS  Google Scholar 

  • Thompson, C., N. Movva, R. Tizard, R. Crameri, J. Davies, M. Lauwereys & J. Botterman, 1987. Characterization of the herbicide resistance gene ‘bar’ from Streptomyces hygroscopicus. EMBO J 6: 2519–2523.

    PubMed  CAS  Google Scholar 

  • Van der Krol, A.R., L.A. Mur, M. Beld, J.N.M. Mol & A.R. Stuitje, 1990. Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Wilmink, A., 1996. Genetic modification of tulip by means of particle bombardment. PhD Thesis, University Nijmegen, The Netherlands, pp. 108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz, P.L., Jacobsen, E. & Stiekema, W.J. Occasional loss of expression of phosphinothricin tolerance in sexual offspring of transgenic oilseed rape (Brassica napus L.). Euphytica 98, 189–196 (1997). https://doi.org/10.1023/A:1003117200129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003117200129

Navigation