Skip to main content
Log in

Biochemical differences in lateral muscle of wild and farmed gilthead sea bream (series Sparus aurata L.)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Red and white muscle from specimens of wild and farmed gilthead sea bream (Sparus aurata) were analyzed for histochemical ATPase activity, total protein content, fatty acids, trace element concentrations and myosin isoforms. The fibre type composition of muscle samples was confirmed histochemically by the ATPase reaction, which did not show any differences between the two groups of animals. Myosin ATPase activities, myosin and protein yields were significantly higher in white muscle than in the red muscle and for the red muscle the latter two parameters were higher in wild fish. Fatty acid profiles revealed differences between the two groups of animals, probably because of the fatty acid composition of the diets. Zinc, copper and iron concentrations were higher in red muscle than in white muscle; muscles from wild fish were significantly richer in trace elements. No separation of fast and slow heavy chains of myosin could be obtained on SDS-gel electrophoresis, but two dimensional electrophoresis revealed the presence of three light chains in white muscle (LC1F, LC2F, LC3F), and two main types in red muscle (LC1S, LC2S). Small, variable percentages of LC3F were found in the red muscle samples, especially in the wild fish. It is concluded that the different environmental conditions, experienced by wild and farmed fish, have significantly influenced the biochemical composition of their lateral muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessio, G. and Gandolfi, G. 1975. Riproduzione artificiale di Orata, Sparus aurata (L.) (Osteichthyes, Sparidae). IV Sviluppo embrionale e postnatale. Istituto Lombardo (Memorie Sc. Mat.) 26: 95-132

    Google Scholar 

  • Ball, D. and Johnston I.A. 1996. Molecular mechanisms underlying the plasticity of muscle contractile properties with temperature acclimation in the marine fish Myoxocephalus scorpius. J. Exp. Biol. 199: 1363-1373.

    Google Scholar 

  • Bassani, V. and Dalla Libera, L: 1991. Myosin isoforms in white, red and pink muscles of the teleost sea bass (Dicentrarchus labrax L.). Bas. Appl. Myol. 1: 153-156.

    Google Scholar 

  • Biral, D., Damiani, E., Margreth, A. and Scarpini, E. 1984. Myosin subunit composition in human developing muscle. Biochem. J. 224: 923-932.

    Google Scholar 

  • Bone, Q. 1978. Locomotor muscle. In Fish Physiology. Vol. 7, pp. 361-424. Edited by W.S. Hoar and D.J. Randall. Academic Press, London.

    Google Scholar 

  • Bottinelli, R., Betto, R., Schiaffino, S. and Reggiani, C. 1994. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J. Physiol. Lond. 478: 341-349.

    Google Scholar 

  • Carpene', E. and Veggetti A. 1981. Increase in muscle fibres in the lateralis muscle (white portion) of Mugilidae (Pisces, Teleostei). Experientia 37: 191-193.

    Google Scholar 

  • Carpene', E., Veggetti, A. and Mascarello, F. 1982. Histochemical fibre types in the lateral muscle of fishes in fresh, brackish and salt water. J. Fish Biol. 20: 379-396.

    Google Scholar 

  • Dalla Libera, L., Margreth, A., Mussini, I., Cerri, C. and Scarlato, G. 1978. Myosin polymorphysm in human skeletal muscle. Muscle and Nerve 1: 280-291.

    Google Scholar 

  • Dalla Libera, L., Carpene', E., Theibert, J. and Collins, J.H. 1991. Fish Myosin alkali light chains originate from two different genes. J. Muscle Res. Cell Motil. 12: 366-371.

    Google Scholar 

  • Dalla Libera, L. and Carpenè, E. 1997. Myosin heavy and light chains and myosin light chain kinase in skeletal and smooth muscle of some wild avian species. Comp. Biochem. Physiol. 116B: 45-50.

    Google Scholar 

  • Fauconneau, B., Gray, C. and Houlihan D.F. 1995. Assessment of individual protein turnover in three muscle types of rainbow trout. Comp. Biochem. Physiol. 111B: 45-51.

    Google Scholar 

  • Felton, S.P., Grace, R. and Landolt, M. 1994. Significantly higher levels of zinc and copper found in wild compared to hatcheryreared coho salmon smolt Oncorhynchus kisutch. Dis. Aquat. Org. 9: 233-236.

    Google Scholar 

  • Hirayama Y., Kanoh S., Nakaya M. and Watabe S. 1997. The two essential light chains of carp fast skeletal myosin, LC1 and LC3, are encoded by distinct genes and change their molar ratio following temperature acclimation. J. Exp. Biol. 200: 693-701.

    Google Scholar 

  • Hochachka, P.W. and Somero, G.N. 1984. Biochemical Adaptation. Princeton University Press, New Jersey.

    Google Scholar 

  • Huriaux, F. and Focant, B. 1985. Electrophoretic and immunological study of myosin light chains from freshwater teleost fishes. Comp. Biochem. Physiol. 82B: 737-743.

    Google Scholar 

  • Huriaux, F., Vandewalle, P. and Focant, B. 1991. Myosin heavy chain isoforms in white, red and ventricle muscles of barbel (Barbus barbus L.). Comp. Biochem. Physiol. 100B: 309-312.

    Google Scholar 

  • Johnston, I.A., Frearson, N. and Goldspink, G. 1972. Myofibrillar ATPase activities of red and white myotomal muscles of marine fish. Experientia 28: 713-714.

    Google Scholar 

  • Johnston, I.A. and Walesby, N.J. 1977. Molecular mechanisms of temperature adaptation in fish myofibrillar adenosine triphosphatases. J. Comp. Physiol. 119: 195-206.

    Google Scholar 

  • Johnston, I.A. 1994. Development and plasticity of fish muscle with growth. Basic Appl. Myol. 4: 353-368.

    Google Scholar 

  • Krajnovic-Ozretic, M. Najdek, M. and Ozretic, B. 1994. Fatty acids in liver and muscle of farmed and wild sea bass (Dicentrarchus labrax L.). Comp. Biochem. Physiol. 109: 611-617.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, Lond. 227: 680-685.

    Google Scholar 

  • Langfeld, K.S., Crockford, T. and Johnston I.A. 1991. Temperature acclimation in the common carp: force-velocity characteristics and myosin subunit composition of slow muscle fibres. J. Exp. Biol. 155: 291-304.

    Google Scholar 

  • Lanzetta, P.A., Alvares, L.J., Reinach, P.S. and Candia O.A. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-103.

    Google Scholar 

  • Lowry, O.H. 1951. Protein measure with the Folin phenol reagent. J. Biol. Chem. 195: 265-275.

    Google Scholar 

  • Lushchak, V.I. and Storey K.B. 1994. Influence of exercise on the distribution of enzymes in trout white muscle and kinetic properties of AMP-deaminase from free and bound fractions. Fish Physiol. Biochem. 13: 407-418.

    Google Scholar 

  • Martinez, I. and Pettersen, G.W. 1992. Temperature-induced precocious transitions of myosin heavy chain isoforms in the white muscle of the Arctic charr, Salvelinus alpinus (L.). Basic Appl. Myol. 2: 89-95.

    Google Scholar 

  • Martinez, I., Ofstad, R. and Olsen, R.L. 1990. Myosin isoforms in red and white muscles of some marine teleost fishes. J. Muscle Res. Cell Motil. 11: 489-495

    Google Scholar 

  • Mascarello, F., Rowlerson, A., Radaelli. G., Scapolo, P.A. and Veggetti, A. 1995. Differentiation and growth of muscle in the fish Sparus aurata (L): I. Myosin expression and organization of fibre types in lateral muscle from hatching to adult. J. Muscle Res. Cell Motil. 16: 213-222

    Google Scholar 

  • Matschak, T.W. and Stickland, N.C. 1996. The influence of temperature on mRNA levels for muscle contractile protein and a proto-oncogene associated with cell division in Atlantic salmon (Salmo salar L.). Can. J. Fish. Aquat. Sci. 53: 408-413.

    Google Scholar 

  • Mourente, G. and Tocher, D.R. 1993. Incorporation and metabolism of 14 C-labelled polyunsaturated fatty acids in juvenile gilthead sea bream Sparus aurata L. in vivo. Fish Physiol. Biochem. 10: 443-453.

    Google Scholar 

  • Nathanailides, C., Lopez-Abors, O. and Stickland, N.C. 1995. Temperature-and developmentally-induced variation in the histochemical profile of myofibrillar ATPase activity in carp. J. Fish Biol. 47: 631-640.

    Google Scholar 

  • O'Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins J. Biol. Chem. 250: 4007-4021.

    Google Scholar 

  • Ogawa, M., Ehara, T., Tamiya, T. and Tsuchiya T. 1993. Thermal stability of fish myosin. Comp. Biochem. Physiol. 106B: 517-521.

    Google Scholar 

  • Penney, R.K. and Goldspink, G. 1981. Regulatory proteins and thermostability of myofibrillar ATPase in acclimated goldfish. Comp. Biochem. Physiol. 69B: 577-583.

    Google Scholar 

  • Rowlerson, A., Heizmann, C.W. and Jenny, E. 1983. Type-specific proteins of single IIM fibres from cat muscle. Biochem. Biophys. Res. Comm. 113: 519-525.

    Google Scholar 

  • Rowlerson, A., Scapolo, P.A., Mascarello, F., Carpene', E. and Veggetti, A. 1985. Comparative study of myosins present in the lateral muscle of some fish:species variations in myosin isoforms and their distribution in red, pink and white muscle. J. Muscle Res. Cell Motil. 6: 601-640.

    Google Scholar 

  • Rowlerson, A. 1994. An outline of fibre types in vertebrate skeletal muscle: histochemical identification and myosin isoforms. Bas. Appl. Myol. 4: 333-352.

    Google Scholar 

  • Rowlerson, A., Mascarello, F., Radaelli, G. and Veggetti, A. 1995. Differentiation and growth of muscle in the fish Sparus aurata (L): II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J. Muscle Res. Cell. Motil. 16: 223-235.

    Google Scholar 

  • Sargent, J.R., Henderson, R.J. and Tocher, D.R. 1989. The lipids. In Fish Nutrition. pp. 153-218. Edited by J. Halver. Academic Press, New York.

    Google Scholar 

  • Schiaffino, S., Gorza, L., Sartore, S., Saggin, L., Vianello, M., Gundersen, K. and Lomo, T. 1989. Three Myosin heavy chain isoforms in type 2 skeletal muscle. J. Muscle Res. Cell Motil. 10: 197-205.

    Google Scholar 

  • Schiaffino, S. and Reggiani C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76: 371-423.

    Google Scholar 

  • Schwalme, K. 1992. A quantitative comparison between diet and body fatty acid composition in wild northern pike (Esox lucius L.). Fish Physiol. Biochem. 2: 91-98.

    Google Scholar 

  • Serrazanetti, G.P., Artusi, R., Pagnucco, C. and Putaturo, G. 1994. Hydrocarbons, sterols and fatty acids in mollusks of Abruzzo coast. In Atti Società Italiana delle Scienze Veterinarie. Vol. XLVIII, pp. 863-867. Grafiche Scuderi, Messina.

    Google Scholar 

  • Serra, R., Isani, G., Cattani, O. and Carpenè, E. 1996. Effects of different levels of dietary zinc on the gilthead, Sparus aurata during the growing season. Biol. Trace Elements. Res. 51: 107-116.

    Google Scholar 

  • Simkiss, K. and Mason, A.Z. 1983. Metal ions: metabolic and toxic effects. In The Mollusca. Vol. 2, pp. 101-164. Edited by K.M. Wilbur. Academic Press, London.

    Google Scholar 

  • SPSS for Windows Base System User's Guide, Release 6.0 1993. SPSS Inc., Chicago.

  • Towbin, A., Staehlin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Nat. Acad. Sci. USA 76: 4350-4354.

    Google Scholar 

  • Trigari, G., Pirini, M., Ventrella, V., Pagliarani, A., Trombetti, F. and Borgatti, A.R. 1992. Lipid composition and mitocondrial respiration in warm-and cold-adapted sea bass. Lipids 27: 371-377.

    Google Scholar 

  • Vescovo, G., Serafini, F., Facchin, L., Tenderini, P., Carraro, U., Dalla Libera, L., Catani, C. and Ambrosio, G.B. 1996. Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart 66: 337-343.

    Google Scholar 

  • Weeds, A.G. 1976. Light chains from slow-twitch muscle myosin. Eur. J. Biochem. 66: 157-173.

    Google Scholar 

  • Zoar, Y., Billard, R. and Weil, C. 1984. La reproduction de la daurade (Sparus aurata) et du bar (Dicentrarchus labrax): connaissance du cycle sexuel et controle de la gamètogènese et de la ponte. In L'Aquaculture du Bar et des Sparidès, pp. 3-24. Edited by G. Barnabè and R. Billard. INRA Publ., Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpene, E., Martin, B. & Dalla Libera, L. Biochemical differences in lateral muscle of wild and farmed gilthead sea bream (series Sparus aurata L.). Fish Physiology and Biochemistry 19, 229–238 (1998). https://doi.org/10.1023/A:1007742328964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007742328964

Navigation