Skip to main content
Log in

The role of cross-slip in brittle fracture and fatigue

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

The relationship between slip character and resistance to cracking under unidirectional and cyclic loading conditions is discussed for single phase solids free of interstitial effects. Under unidirectional loading, increased difficulty of cross-slip intensifies strain within glide bands, induces planar glide, increases the dependence of the yield stress on grain size, and increases the probability of crack formation. In contrast, under cyclic loading, increased difficulty of cross-slip inhibits the slip processes required for crack initiation and growth at a given stress level. A semi-empirical means for predicting the rate of fatigue crack growth is presented.

Résumé

Les relations existant entre les propriétés de déformation par glissement et la réstance aux criques dans des conditions de contrainte unidirectionnelle ou cyclique sont étudiées dans le cas de solides monophasés exempts d' atomes strangers en insertion. Sous charges unidirectionnelles, la difficulte accrue de formation de cross-slips augmente la tension à l' intérieur des bandes de glissement, provoque un glissement plan, accentue la dépendance de la limite élastique sur la grosseur de grain et accroît la probabilité de formation de criques. Par contre, sous charges cycliques, cette même difficulté accrue de formation de crossslips empêche, à un niveau de contraintes donnees, le processus de glissement indispensable à la naissance et au développement de criques. 11 est proposé un moyen semi-empirique de prévoir le taux de croissance des criues de fatigue.

Zusammenfassung

Für einphasige Festkdrper, die frei von Zwischengittereffekten sind, wind die Beziehung zwischen Gleitcharakter and Widerstand gegenüber Ribbildung unter den Bedingungen von Belastung in einer Richtung and zyklischer Belastung diskutiert. Bei Belastung in einer Richtung verstrakt die stark erschwerte Quergleitung die Spannung innerhalb der Gleitbänder, verursacht Ebenen-Gleitung, erhöht die Abhängigkeit der Fliesspannung von der Korngrösse and die Wahrscheinlichkeit der Rissbildung. Bei zyklischer Belastung dagegen verzögert die strak erschwerte Quergleitung solche Gleitprozesse, die zu Bildung and Wachsturn von Rissen notwendig sind. Eine halbempirische Regel für die Vorhersage der Wachstumsgeschwindigkeit von Ermüdungrissen wird angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stokes, R.J. and Li, C.H.Symposium, “Structure and Properties of Engineering Materials,” Raleigh, North Carolina, March, 1962.

    Google Scholar 

  2. Stoloff, N.S., Lezius, D.K. and Johnston T.L. J. Appl. Phys. 34, 3315, 1963.

    Google Scholar 

  3. McEvily, A.J. and Machlin E.S.Fracture, Wiley, New York, 450, 1959.

    Google Scholar 

  4. Boetmer, R.C., and Stoloff, N. S., and Davies, R.G. Trans. AIME (in press).

  5. Stoloff, N.S. and Davies, R. G. Acta Met. 12, 251, 1963.

    Google Scholar 

  6. Stoloff, N.S. and Davies, R.G. and Ku, R., Trans. AIME 253, 1500, 1965.

    Google Scholar 

  7. Boettner, R.C. and McEvily, A. J. Acta Met. 13, 937, 1965.

    Google Scholar 

  8. Swann, P.R. Electron Microscopy and Strength of Crystals, Thomas, G. and Jack Washburn Eds. , Interscience, New York, 1963.

  9. Davies, R.G. and Stoloff, N.S. Phil. Mag. 9, 349, 1964.

    Google Scholar 

  10. Davies, R.G. and Stoloff, N.S. Acta Met. 12, 473, 1964.

    Google Scholar 

  11. Ku, R.C., McEvily, A.J. and Johnston, T.L.Unpublished results.

  12. Thomas, G.J. Australian Inst. of Metals 8, 80, 1963.

    Google Scholar 

  13. Keh, A.S. and Weissman, S. electron Microscopy and the strength of Crystals, Thomas, G. and Jack Washum, Eds., Interscience, New York, 1963.

  14. Lawley, A. and Gaigher, H.L. Phil. Mag. 10, 15, 1964.

    Google Scholar 

  15. Brown, N. and Ekvall, R.A.Acta Met. 10, 1101, 1962.

    Google Scholar 

  16. Armstrong, R., Todd, I., Douthwaite, R.M. Phil. Mag. 7, 45, 1962.

    Google Scholar 

  17. Carnahan, R.D., Johnston, T.L., Stokes, R.J. and Li, C.H., Trans. AIME 221, 45, 1961.

    Google Scholar 

  18. Groves, G.W. and Kelly, A. Phil. Mag. 8, 877, 1963.

    Google Scholar 

  19. Orowan, E. Dislocations in Metals, M. Cohen Ed., AIME, 1954.

  20. MacMahon, C.J. and Cohen, M. Acta Met. 13, 591, 1965.

    Google Scholar 

  21. Johnston, T. L., Davies, R.G. and Stoloff, N.S. Phil. Mag. 12, 305, 1965.

    Google Scholar 

  22. Cottrell, A.H.Trans. AIME 212, 192, 1958.

    Google Scholar 

  23. Cottrell, A.H. Dislocations and Plastic Flow in Crystals, Oxford, 1953.

  24. Perch, N.J. Phil. Mag. 3, 1089, 1958.

    Google Scholar 

  25. Smith, E. and Worthington, P.J.: Int. Conf. on Fracture, Sendai, Japan, 1965.

  26. Forsyth, P.J.E.Proc. of the Crack Propagation Symposium, Cranfield, England 76, 1961.

  27. Wood, W. A. Fracture, Wiley, New York; 412, 1959.

    Google Scholar 

  28. Avery, D.H. and Backofen, W.A. Fracture of Solids, Interscience Publishers, New York, 339, 1963.

    Google Scholar 

  29. McEvily, A.J. and Machlin, E.S. Trans. RIME221, 1086, 1961.

    Google Scholar 

  30. Fegredo, D.M. and Greenough, G.B. Inst. Metals 87, 1, 1958–59.

    Google Scholar 

  31. McEvily, A.J. and Boetmer, R.C. Acta Met. 11, 725, 1963.

    Google Scholar 

  32. Anon. ASM Metals Handbook,American Society for Metals, Metals Park,- Ohio 936, 1961.

  33. Ferro, A. and Montalenti, G. Phil. Mag. 10, 1043, 1961.

    Google Scholar 

  34. Strutt, P.R. J.Australian Inst. of Metals 8, 115, 1963.

    Google Scholar 

  35. Feltner, C.E. Phil. Mag. (in press).

  36. Manson, S.S. Experimental Mechanics 5, 193, 1965.

    Google Scholar 

  37. Morrow, J.D. J. Basic Engineering, Trans ASME, Series D, 87, 275, 1965.

    Google Scholar 

  38. Alden, T. Trans. AIMS 224, 1287, 1962.

    Google Scholar 

  39. Laird, C. and Smith, G.C. Phil. Mag. 7, 847, 1962.

    Google Scholar 

  40. Paris, P.C., Gomez, M.P. and Anderson, W.E. The Trend in Engineering 13, 9, 1961.

    Google Scholar 

  41. McEvily, A.J. and Illg, W.Nat. Advis. Comm. for Aero. , Tn 4394,1958.

  42. Paris, P.C. and Erdogan, F. J. Basic Engineering, Trans. ASME, Series D, 85, 528, 1963.

    Google Scholar 

  43. Weertman, J. Int. Conf. on Fracture, Sendai, Japan, 1965.

  44. McClintock, F.A. Fracture of Solids, Interscience Publishers, New York, 65, 1963.

    Google Scholar 

  45. Krafft, J.M. Applied Materials Research 3, 88, 1964.

    Google Scholar 

  46. Liu, H.W. ibid, 3, 229, 1964.

  47. Bilby, B.A., Cottrell, A.H. and Swinden, K.H. Proc. Roy. Soc. A 272, 304, 1963.

    Google Scholar 

  48. Boettrrer, R.C., Laird, C. and McEvily, A.J. Trans AIMS 223, 386, 1965.

    Google Scholar 

  49. Manson, S.S. Nat. Advis. Comm. for Aero., Tn 2955, 1953.

  50. Coffin, L.F. Trans. ASME 76, 931, 1954.

    Google Scholar 

  51. Laird, C. and Smith, G.C. Phil. Mag. 8, 1945, 1963.

    Google Scholar 

  52. Lutz, G.B. and Wei, R.P. U.S. Steel Appl. Res., Lab. TR, Proj. No. 40112–011(1), July 1961. 53. Munse, W.H. Stallmeyer, J.E. and Rone, J. W. U. of Illinois Report, 1965.

  53. McEvily, A.J. Boettner, R.C. and, Bond, A.P. Inst. Metals 93, 481, 1964–65.

    Google Scholar 

  54. Donaldson, D.R. and Anderson, W. E. Proc. of the Crack Propagation Symposium, Cranfield, England, 375, 1961.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is a revised version of a paper presented at the International Conference on Fracture, Sendai, Japan, September 1965.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEvily, A.J., Johnston, T.L. The role of cross-slip in brittle fracture and fatigue. Int J Fract 3, 45–74 (1967). https://doi.org/10.1007/BF00188645

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00188645

Keywords

Navigation