Skip to main content
Log in

Theoretical basis of regularized integral equations for elastostatic crack problems

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Integral equations derived by means of the potential theory for statical crack problems are singular in the sense of the principal value. In the present paper, these integrals are transformed into weakly singular ones and the so-called regularized integral equation is thus obtained. The conditions which permit the transformation are discussed and the weak singularity is proved. The kernel of the regularized equation is written in terms of the density, equal to the displacement discontinuity on the crack surface, in such a way that no extension of this density is involved. The results obtained hold for either embedded or surface crack problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.A. Cruse, International Journal of Solids and Structures 5 (1969) 1259–1274.

    Google Scholar 

  2. F.J. Rizzo and D.J. Shippy, International Journal of Numerical Methods in Engineering 11 (1977) 1753–1768.

    Google Scholar 

  3. M. Bonnet, “Méthode des équations intégrales régularisées en élastodynamique”, thesis, Ecole Nationale de Ponts et Chaussées, November 1986.

  4. H.D. Bui, B. Loret and M. Bonnet, Comptes Rendus Academie des Sciences, Paris, t.300, series II, No. 14 (1985) 633–636.

  5. B. Loret and M. Bonnet, Congress in Tendances actuelles en calcul de structures, Bastia, November 1985.

  6. F.J. Rizzo, D.J. Shippy and M. Rezavat, International Journal of Numerical Methods in Engineering 21 (1985) 115–129.

    Google Scholar 

  7. J.B. Leblond, Comptes Rendus Academie des Sciences, Paris, t. 303, series II, No. 17 (1987) 1521–1524.

  8. H.D. Bui and M. Bonnet, Regular BIE for three-dimensional cracks in elastodynamics, Symposium IUTAM, San Antonio, April 1987.

  9. A. Levan and J. Royer, International Journal of Fracture 31 (1986) 125–142.

    Google Scholar 

  10. V. Sladek and J. Sladek, International Journal of Solids and Structures 19 (1983) 425–436.

    Google Scholar 

  11. V.D. Kupradze, Dynamical Problems in Elasticity-Progress in Solids Mechanics, vol. III, North Holland (1963).

  12. N.M. Gunther, La théorie du Potentiel et ses Applications aux Problèmes Fondamentaux de la Physique Mathématique, Gauthiers-Villars (1934).

  13. S.G. Mikhlin, Multi-dimensional Singular Integrals and Integral Equations, Pergamon Press (1965).

  14. A. Levan and B. Peseux, International Journal of Numerical Methods in Engineering 26 (1988) 2383–2402.

    Google Scholar 

  15. V.D. Kupradze, T.G. Gegilia, M.O. Bashelishvili and T.V. Burchuladze, Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North Holland (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levan, A., Royer, J. Theoretical basis of regularized integral equations for elastostatic crack problems. Int J Fract 44, 155–166 (1990). https://doi.org/10.1007/BF00035513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035513

Keywords

Navigation