Skip to main content
Log in

Cascadating fracture in a laminated tempered safety glass panel

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The macrofracture pattern of a laminated, tempered safety plate glass panel in which failure was initiated by a sharp object was statistically analyzed. The crack density decreased linearly with distance from the fracture origin as did the average distance between successive crack branching events. The average bifurcation half angle, however, remained at about 21°, independent of distance from the fracture origin. This half angle is very similar to that reported for the branching of an individual primary crack in a fracture mechanics specimen. The two branching half-angles are negatively correlated, approaching a maximum of 45° in the extreme.

The curvatures of the new crack paths after bifurcation were also observed to be independent of the distance from the fracture origin and followed the general expression where the coefficient α is a random variable and β is a constant equal to 0.035. It was possible to describe the repetitive crack branching through the concept of a fractal tree with a fractal dimension of 2.58, a value similar to some geological processes. Applying the fractal tree concept, the multiple cascadation phenomenon was reproduced for the range of fractal dusts of z ≤ 4, beyond which degeneration related to excessive selfoverlapping occurred.

{fx49-1}

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.W.Preston, Journal of American Ceramic Society 18 (1935) 175–176.

    Google Scholar 

  2. A.Smekal, Journal of the Society of Glass Technology 20 (1936) 432–453.

    Google Scholar 

  3. D.G.Christie, Journal of the Society of Glass Technology 36 (1952) 74–89.

    Google Scholar 

  4. H. Kolsky, in Fracture, B.L. Averbach, D.K. Felbeck, G.T. Hahn and D.A. Thomson (eds.), MIT Press & John Wiley (1959) 281–296.

  5. C.J.Phillips, in Fracture 7, H.Liebowitz (ed.), Academic Press, New York (1972) 2–37.

    Google Scholar 

  6. L.Orr, Material Research and Standards 12 (1972) 21–27.

    Google Scholar 

  7. B.A.Bilby, Journal of Materials Science 15 (1980) 535–556.

    Google Scholar 

  8. S.W.Freiman, in Glass and Technology, Vol. 5, D.R.Uhlmann and N.L.Kreidl (eds.), Academic Press, London (1980) 21–78.

    Google Scholar 

  9. R.J.Charles, Journal of Applied Physics 29 (1958) 1549.

    Google Scholar 

  10. M.Ashizuka, T.E.Easler and R.C.Bradt, Journal of American Ceramic Society 66 (1983) 542–550.

    Google Scholar 

  11. P.Acloque and C.Guillemet, in Advances in Glass Technology, Part 2, F.R.Matson and G.E.Rindone (eds.), Plenum Press, New York (1963) 95–106.

    Google Scholar 

  12. R.C. Bradt, in Advances in Ceramics, Vol. 22, V.D. Frechette and J.R. Varner (eds.), The American Ceramic Society (1988) 417–426.

  13. R.Gardon, in Glass Science and Technology, Vol. 5, D.R.Uhlmann and N.L.Kreidl (eds.), Academic Press, London (1980) 145–216.

    Google Scholar 

  14. A.Fayet, C.Guillemet and P.Acloque, in Proceedings, 8th International Congress on High Speed Photography, N.R.Nilsson and L.Högberg (eds.) John Wiley & Sons, Stockholm (1969) 433–439.

    Google Scholar 

  15. J.E.Field, Contemporary Physics 12 (1971) 1–31.

    Google Scholar 

  16. A.B.J.Clark and G.R.Irwin, Experimental Mechanics 6 (1966) 321–330.

    Google Scholar 

  17. J.W.Dally, Experimental Mechanics 19 (1979) 349–367.

    Google Scholar 

  18. K.Ravi-Chandar and W.G.Knauss, International Journal of Fracture 26 (1984) 141–154.

    Google Scholar 

  19. J.Congleton, in Dynamic Crack Propagation, G.C.Sih (eds.) Noordhoff International Publishing, Leyden (1973) 427–438.

    Google Scholar 

  20. A.S.Kobayashi, B.G.Wade, W.G.Bradley and S.T.Chiu, Engineering Fracture Mechanics 5 (1974) 81–92.

    Google Scholar 

  21. E.H.Yoffe, Philosophical Magazine 42 (1951) 739–750.

    Google Scholar 

  22. G.C.Sih, in Elastodynamic Crack Problems, G.C.Sih (ed.) Noordhoff Publishing, Leyden (1977) 17–46.

    Google Scholar 

  23. M. Ramulu, A.S. Kobayashi and B.S.-J. Kang, ASTM STP 833 (1984) 130–148.

  24. M.Ramulu and A.S.Kobayashi, Theoretical and Applied Fracture Mechanics 5 (1986) 117–123.

    Google Scholar 

  25. P.S.Theocaris and H.G.Georgiadis, International Journal of Fracture 29 (1985) 181–190.

    Google Scholar 

  26. M.Ramulu, A.S.Kobayashi, B.S.-J.Kang and D.B.Barker, Experimental Mechanics 23 (1983) 431–437.

    Google Scholar 

  27. M.Ramulu, A.S.Kobayashi and B.S.-J.Kang, Journal of Pressure Vessel Technology 104 (1982) 317–322.

    Google Scholar 

  28. M.Ramulu and A.S.Kobayashi, International Journal of Fracture 27 (1985) 187–201.

    Google Scholar 

  29. R.W. Rice, in Advances in Ceramics, Vol. 22, The American Ceramic Society (1988) 3–56.

  30. M. Ramulu, R.C. Bradt, A.S. Kobayashi and K.H. Yang, in Advances in Ceramics, Vol. 22, The American Ceramic Society (1988) 215–227.

  31. L.R.F.Rose, International Journal of Fracture 12 (1976) 793–813.

    Google Scholar 

  32. M.L. Williams and W.G. Knauss (eds.) International Journal of Fracture 27 (1985) 23–312.

    Google Scholar 

  33. J.J. Mecholsky, T.J. Mackin and D.E. Passoja, in Advances in Ceramics, Vol. 22, The American Ceramic Society (1988) 127–134.

  34. K.Ravi-Chandar and W.G.Knauss, International Journal of Fracture 26 (1984) 189–200.

    Google Scholar 

  35. Westerman, Journal of Mathematical Physics 43 (1965) 191–199.

    Google Scholar 

  36. A.M.Freudenthal, in Fracture 2, H.Liebowitz (ed.) Academic Press, New York (1968) 591–619.

    Google Scholar 

  37. R.E.Bullock and J.L.Kaae, Journal of Materials Science 14 (1979) 920–930.

    Google Scholar 

  38. T. Sakai and T. Tanaka, in Fatigue '84, Vol. 2, J. Baeklund, A.F. Blom, and C.J. Beevers (eds.), EMA Publishers (1984) 1125–1137.

  39. T.Tanaka, T.Sakai and K.Okada, Bulletin of the JSME 28 (1985) 209–216.

    Google Scholar 

  40. A.M.Mood, F.A.Graybill and C.Boes, Introduction to the Theory of Statistics, McGraw-Hill Book Co., New York (1974) 162.

    Google Scholar 

  41. E.P.Bullen, F.Henderson and H.Wain, Philosophical Magazine 21 (1970) 689–699.

    Google Scholar 

  42. J.Congleton and N.J.Petch, Philosophical Magazine 16 (1967) 749–760.

    Google Scholar 

  43. H.Kirchner, R.M.Gruver, M.V.Swain and R.C.Garvie, Journal of American Ceramic Society 64 (1981) 529–533.

    Google Scholar 

  44. J.F.Kalthoff, International Journal of Fracture 7 (1971) 478–480.

    Google Scholar 

  45. A.Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., New York (1984) 135.

    Google Scholar 

  46. J.S.Hawong, A.S.Kobayashi, M.S.Dadkhah, B.S.-J.Kang and M.Ramulu, Experimental Mechanics 27 (1987) 146–153.

    Google Scholar 

  47. B.B.Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Co., New York (1977).

    Google Scholar 

  48. R.Orbach, Science 231 (1986) 814–819.

    Google Scholar 

  49. E.E.Underwood and K.Banerji, Materials Science and Engineering 80 (1986) 1–14.

    Google Scholar 

  50. D.W. Schaefer, MRS Bulletin (1988) 22–27.

  51. B.B.Mandelbrot, D.E.Passoja and A.J.Paullay, Nature 308 (1984) 721–722.

    Google Scholar 

  52. J.J.Mecholsky, D.E.Passoja and K.S.Feinberg-Ringe, Journal of American Ceramic Society 72 (1989) 60–65.

    Google Scholar 

  53. P.Pfeifer and D.Avnir, Journal of Chemical Physics 79 (1983) 3558–3565.

    Google Scholar 

  54. D.Avnir and D.Farin, Journal of Chemical Physics 79 (1983) 3566–3571.

    Google Scholar 

  55. D.M.Mark and P.B.Aronson, Mathematical Geology 16 (1984) 671–683.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, T., Ramulu, M., Ghosh, A. et al. Cascadating fracture in a laminated tempered safety glass panel. Int J Fract 48, 49–69 (1991). https://doi.org/10.1007/BF00012502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00012502

Keywords

Navigation