Skip to main content
Log in

Modular transposition and the dynamical structure of eukaryote regulatory evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

This paper examines a model in which transposable elements provide a modular architecture for the cellular genome, complemented by cellular recombinational transformations, arising in turn as a dynamical consequence of this modular structure. It is proposed that the ecology of transposable elements in a given organism is a function of recombinational protocols of the evolving cellular genome. In mammals this is proposed to involve coordinated meiosis-phased activation of LINEs, SINEs and retrogenes complemented by endogenous retroviral transfer between cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, G. R., D. L. Stoler, J. P. Scott & B. K. Farkas, 1988. Induction of VL30 element expression as a response to anoxic stress, pp. 265–74 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Ashworth, A., B. Skene, S. Swift & R. Lovell-Badge, 1990. Zfa is an expressed retroposon derived from an alternative transcript of the Zfx gene. EMBO J. 9: 1529–34.

    Google Scholar 

  • Bains, W. J., 1986. The multiple origins of human Alu sequences. J. Mol. Evol. 23: 189–99.

    Google Scholar 

  • Bernstein, L., S. Mount & A. Weiner, 1983. Pseudogenes for human small nuclear RNA U3 appear to arise by integration of self-primed transcripts of the RNA into new chromosomal sites, Cell 32: 461–72.

    Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp. 485–502 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Blakemore, C., 1991. Images in the Brain, Sir Douglas Robb Lectures, University of Auckland.

  • Boeke, J. D., 1989. Transposable Elements in Saccharomyces cerevisae, pp. 335–74 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D. C.

    Google Scholar 

  • Boeke, J., D. Eichinger & G. Fink, 1988. Regulation of yeast Ty element transposition, pp. 169–82 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Brosius, J., 1991. Retroposons-seeds of evolution, Science 251: 753.

    Google Scholar 

  • Callan, H. G., 1963. The nature of lampbrush chromosomes. Int. Rev. Cyt. 15: 1–34.

    Google Scholar 

  • Callan, H. G., 1969. Biochanmical activities of chromosomes during the prophase of meiosis, pp. 540–552 in A. Handbook of Molecular Cytology, edited by Lima de Faria North Holland Amsterdam.

  • Callahan, R., 1988. Two families of human endogenous retroviral genomes, pp. 91–100 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Carlson, D., J. Ross, 1983. Human β-globin promoter and coding sequences transribed by RNA polymerase III. Cell 34: 857–64.

    Google Scholar 

  • Carrol, D., D. Knutzon & J. Garrett, 1989. Transposable Elements in Xenopus species, pp. 567–74 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Chao, L., C. Vargas, B. Spear & E. Cox, 1983. Transposable Elements as Mutator Genes in Evolution. Nature 303: 633–5.

    Google Scholar 

  • Chen, I., G. McLauglin & D. Golde, 1984. Long terminal repeats of human T-cell leukemia virus II genome determine target specificity. Nature 309: 276–9.

    Google Scholar 

  • Copeland, N., K. Hutchinson & N. Jenkins, 1983a. Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 33: 379–87.

    Google Scholar 

  • Copeland, N., N. Jenkins & B. Lee, 1983b. Association of the lethal yellow (Ay) coat color mutation with an ecotropic murine leukemia virus genome. Proc. Nat. Acad. Sci. 80: 247–9.

    Google Scholar 

  • Davidson, E., R. Britten, 1979. Regulation of gene expression: possible role of repetitive sequences. Science 204: 1052–9.

    Google Scholar 

  • Davidson, E. & J. Posakony, 1982. Repetitive sequence transcripts in development. Nature 297: 633.

    Google Scholar 

  • Deinhardt, F., 1980. Biology of Primate Retroviruses, pp. 357–97 in G. Klein, Viral Oncology, Raven Press, New York.

    Google Scholar 

  • Deininger, P. L., 1989. SINEs: Short interspersed repeated DNA elements in higher eukaryotes, pp. 619–36 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Doolittle, W., C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–3.

    Google Scholar 

  • Dover, G., 1982. Molecular drive: A cohesive mode of species evolution. Nature 299: 111–7.

    Google Scholar 

  • Edelman, G. M., J. A. Gally, 1970. Arrangement and Evolution of Eukaryotic genes in The neurosciences edited by F. O. Schmit, Rockefeller University Press, N.Y.

    Google Scholar 

  • Engels, W., 1989. P elements in Drosophila melanogaster, pp. 437–84 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Federoff, N. V., 1989. Maize transposable Elements in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D. C.

    Google Scholar 

  • Fink, G. R., 1987. Pseudogenes in yeast? Cell 49: 5–6.

    Google Scholar 

  • Finnegan, D. J., 1983. Retroviruses and transposable elements-which came first? Nature 302: 105–6.

    Google Scholar 

  • Finnegan, D. J., 1985. Transposable Elements in euckaryotes. Int. Rev. Cyt. 93: 281–325.

    Google Scholar 

  • Finnegan, D. J., 1989a. F and related elements in Drosophila melanogaster, pp. 519–21 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Finnegan, D. J., 1989b. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, pp. 503–18 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Firtel, R. A., 1989. Mobile elements in the cellular slime mold Dictyostellium discoidium, pp. 557–66 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Geyer, P., M. Green & V. Corces, 1988. Molecular basis of transposable element-induced mutation in Drosophila melanogaster, pp. 123–30 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Graur, D., Y. Shuali & W. Li, 1989. Deletions in processed pseudogenes accumulate faster in rodents than in humans. J. Mol. Evol. 28: 279–85.

    Google Scholar 

  • Green, M. M., 1988. Mobile DNA elements and spontaneous gene mutation, pp. 41–50 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Gorczynski, R. & E. Steele, 1980. Inheritance of acquired immunological tolerance to foreign histocompatibility antigens in mice. Proc. Nat. Acad. Sci. 77: 2871–5.

    Google Scholar 

  • Hawley, R., M. Shulman, H. Murialdo, D. Gibson & N. Hozumi, 1982. Mutant immunoglobulin genes have repetitive DNA elements inserted into their intervening sequences. Proc. Nat. Acad. Sci. 79: 7425–7429.

    Google Scholar 

  • Hollis, G.F., P. A. Hieter, O. McBride, D. Swam & P. Leder, 1982. Processed genes: a dispersed human immunoglobulin gene bearing evidence of RNA-type processing. Nature 296: 321–3.

    Google Scholar 

  • Hutchinson, C., S. Hardies, D. Loeb, W. Shehee & M. Edgell. LINEs and related retrotransposons: Long interspersed repeated sequences in the eucaryotic genome, pp. 593–618 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

  • Inouye, M. & S. Inouye, 1991. Retroelements in bacteria. TIBS Jan: 18–21.

  • Jeffreys, A., V. Wilson & S. Thein, 1985. Hypervariable ‘minisatellite’ regions in human DNA. Nature 314: 67.

    Google Scholar 

  • Jenkins, N., N. Copeland, B. Taylor & B. Lee, 1981. Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 293: 370–4.

    Google Scholar 

  • Johns, M., J. Mottinger & M. Freeling, 1985. A low copy number Copia-like transposon in maize. EMBO J. 4: 1093–102.

    Google Scholar 

  • Kenter, A. & B. Birshtein, 1981. Chi, a promoter of generalized recombination in λ phage is present in immunoglobulin genes. Nature 293: 402–4.

    Google Scholar 

  • King, C., 1978. Unified field theories and the origins of life Univ. Auckland. Math. Dept. Rep. Series. 134.

  • King, C., 1985. A model for transposon-based eucaryote regulatory evolution. J. Theor. Biol. 114: 447–462.

    Google Scholar 

  • King, C., 1989. Dual-Time Supercausality Physics Essays 2/2: 128–151.

    Google Scholar 

  • King, C., 1991. Fractal and Chaotic Dynamics in Nervous Systems Progress in Neurobiology 36: 279–308.

    Google Scholar 

  • Koishi, R. & N. Okada, 1991. Distribution of the salmonid Hpal family demonstrated by in vitro runoff transcription assay of total DNA. J. Mol. Evol. 32: 43–52.

    Google Scholar 

  • Kuff, E. L., 1988. Factors affecting retrotransposition of intracisternal A-particle proviral element, pp. 79–90 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Lassar, A., M. Martin & R. Roeder, 1983. Transcription of class III genes: formation of preinitiation complexes. Science 222: 740–8.

    Google Scholar 

  • Lemischka, I. & P. Sharp, 1982. The sequences of an expressed rat α-tubulin gene and a pseudogene with an inserted repetitive element. Nature 300: 330–5.

    Google Scholar 

  • Limbach, K. & R. Wu, 1985. Characterization of a mouse somatic cytochrome c gene and three cytochrome c pseudogenes. Nucleic Acid Res. 13: 617–30.

    Google Scholar 

  • Limborska, S., S. Korneev, N. Maleeva, A. Slominsky Jinsharadze, P. Ivanov & A. Ryskov, 1987. Cloning of Alu-containing cDNAs from human fibroblasts and identification of smal Alu polyA RNAs in a variety of human normal and tumor cells. FEBS Lett. 212: 208–12.

    Google Scholar 

  • Lueders, K. & E. Kuff, 1977. Sequences associated with intracisternal A particles are reiterated in the mouse genome. Cell 12: 963–972.

    Google Scholar 

  • Lueders, K., A. Leder, P. Leder & E. Kuff, 1982. Association between a transposed α-globin pseudogene and retroviruslike elements in the BALB/c mouse genome. Nature 295: 426–8.

    Google Scholar 

  • MacLeod, A. & K. Talbot, 1983. A processed gene defining a gene family encoding a human non-muscle tropomyosin. J. Mol. Biol. 167: 523–37.

    Google Scholar 

  • Manley, J. & M. Colozzo, 1982. Synthesis in vitro of an exceptionally long RNA transcript promoted by an Alu sequence. Nature 300: 376–9.

    Google Scholar 

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome Stadler Genet. Symp. 10: 25–48.

    Google Scholar 

  • McClintock, B., 1984. The significance of the responses of the genome to challenge. Science 226: 792–801.

    Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–91.

    Google Scholar 

  • McDonald, J. F., D. Strand, M. Brown, S. Paskewitz, A. Csink & S. Voss, 1988. Evidence of host-mediated regulation of retroviral element expression at the post-transcriptional level, pp. 219–34 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Meuth, M., 1989. Illegitimate recombination in mammalian cells, pp. 833–60 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Moreau, J., L. Marcaud, F. Maschat, J. Kejzlarova-Lepesant, J. Lepesant & K. Scherrer, 1982. A + T-rich linkers define functional domains in eukaryotic DNA. Nature 295: 260–2.

    Google Scholar 

  • Moroni, C., G. Schuman, 1977. Are endogenous C-type viruses involved in the immune system? Nature 269: 600–1.

    Google Scholar 

  • Okada, N., 1990. Transfer RNA-like structure of the human Alu family: Implications of its generation mechanism and possible functions. J. Mol. Evol. 31: 500–510.

    Google Scholar 

  • Orgel, L. & F. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–7.

    Google Scholar 

  • Phillips, S., E. Birkenmeier, R. Callahan & E. Eicher, 1982. Male and female mouse DNAs can be discriminated using retroviral probes. Nature 297: 241–243.

    Google Scholar 

  • Pollard, J. W., 1987. The moveable genome Rivista di Biologia-Biol. Forum 80: 11–54.

    Google Scholar 

  • Quentin, Y., 1988. The Alu family developed through successive waves of fixation closely connected with primate lineage history. J. Mol. Evol. 27: 194–202.

    Google Scholar 

  • Reanney, D. C., 1974. Viruses and evolution. Int. Rev. Cytol. 37: 21–55.

    Google Scholar 

  • Reanny, D. C., 1975. A regulatory role for viral RNA in eukaryotes. J. Theor. Biol. 49: 461–92.

    Google Scholar 

  • Reanny, D. C., 1976. Extrachromosomal elements as possible agents of adaption and development. Bact. Rev. 40: 552–90.

    Google Scholar 

  • Ridley, M., 1985. Selfish DNA comes of age New Scientist 16 May: 34–7.

  • Rogers, J., 1985. The origin and evolution of Retroposons Int. Rev. Cytol. 93: 281–326.

    Google Scholar 

  • Rosen, E., A. Siversten & H. Firtel, 1983. An unusual transposon encoding heat shock inducible and developmentally regulated transcripts in dictyostellium. Cell. 35: 243–51.

    Google Scholar 

  • Saffer, J. & S. Thurston S, 1989. A negative regulatory element with properties similar to those of enhancers is contained within an Alu sequence. Mol. Cell. Biol. 9: 355–364.

    Google Scholar 

  • Samuelson Wiebauer, K., C. Snow & M. Meisler, 1990. Retroviral & pseudogene insertion sites reveal lineage of human salivary & pancreatic amylase genes from a single gene during primate evolution. Mol. Cell. Biol.: 2513–20.

  • Sawyer, M., N. Nachlas & S. Panem, 1978. C-type viral antigen expression in human placenta. Nature 275: 62–4.

    Google Scholar 

  • Sharp, P., 1983. Conversion of RNA into DNA in mammals: Alu-like elements and pseudogenes. Nature 301: 471–2.

    Google Scholar 

  • Schwartz-Sommer, Z., 1987. The significance of plant transposable elements in biological processes in Structure and Function of Eukaryotic Chromosomes. Hennig H. Springer-Verlag Berlin Heidelberg 213–21.

    Google Scholar 

  • Speck, N. & D. Baltimore, 1987. Six distinct nuclear factors interact with the 75-base pair repeat of the Moloney murine leukemia virus enhancer. Mol. Cell. Biol. 7: 1101–10.

    Google Scholar 

  • Srikantha, T., D. Landsman & M. Bustin, 1987. Retropseudogenes for human chromosomal protein HMG-17. J. Mol. Biol. 197: 405–13.

    Google Scholar 

  • Staber, F. G. & E. Schläfli, 1978. Expression of endogenous C-type virtal antigen on mormal mouse haemopoietic stem cells. Nature 275: 669–71.

    Google Scholar 

  • Stavenhagen, J. & D. Robins, 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–54.

    Google Scholar 

  • Steele, E., 1984. Somatic Selection and Adaptive Evolution: On the Inhertiance of Acquired Characters 2nd ed. Univ. Chicago Press, Chicago.

    Google Scholar 

  • Stoye, J. P. & J. M. Coffin, 1987. The four classes of endogenous murine leukemia virus: Structural relationships and potential for recombination. J. Virol. 61: 2659–69.

    Google Scholar 

  • Stoye, J. P. & J. M. Coffin, 1988. Polymorphism of murine endogenous proviruses revealed by using virus class specific oligonucleotide probes. J. Virol. 62: 168–75.

    Google Scholar 

  • Sutcliffe, J., R. Milner, J. Gottesfeld & R. Lerner, 1984a. Identifier sequences are transcribed specifically in brain. Nature 308: 237–241.

    Google Scholar 

  • Sutcliffe, J., R. Milner, J. Gottesfeld & W. Reynolds, 1984b. Control of neuronal gene expression. Science 225: 1308–15.

    Google Scholar 

  • Tchurikov, N., T. Gerasimova, S. Georgieva, L. Mizrokhi, P. Georgiev & Y. Ilyn, 1988. Concerted transposition in Drosophila melanogaster, pp. 103–11 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Banbury Report 30, Cold Spring Harbor Laboratory.

  • Temin, H. M., 1980. Origin of retroviruses from cellular moveable genetic elements. Cell 21: 599–600.

    Google Scholar 

  • Temin, H. M., 1989. Retrons in bacteria. Nature 339: 254–5.

    Google Scholar 

  • Ueda, S., S. Hakai, Y. Nishida, H. Hisajima & T. Honjo, 1982. Long terminal repeat-lke elements flank a human immunoglobulin epsilon pseudogene that lacks introns. EMBO J. 1: 1539–44.

    Google Scholar 

  • Ullu, E. & C. Tschudi, 1984. Alu sequences are processed 7sL RNA genes. Nature 312: 171–172.

    Google Scholar 

  • Vanin, E. F., 1984. Processed pseudogenes: Characteristics and evolution. Biochem. Biophys. Acta 782: 231–241.

    Google Scholar 

  • Varmus, H., 1982. Form and function of retroviral proviruses. Science 216: 812–20.

    Google Scholar 

  • Varmus, H. & P. Brown, 1989. Retroviruses, pp. 53–108 in Mobile DNA, edited by D. E. Berg and M. Howe, American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Voliva, C., S. Martin, C. Hutchinson & M. Edgell, 1984. Dispersal processes associated with the L1 family of interspersed repetitive DNA sequences. J. Mol. Biol. 178: 795–813.

    Google Scholar 

  • Waddington, C. H., 1957. The Strategy of the Genes Allen & Unwin, London.

  • Watson, J. & J. Sutcliffe, 1987. Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol. Cell. Biol. 7: 3324–7.

    Google Scholar 

  • Watson, J. D., N. H. Hopkins, J. W. Roberts, J. A. Stietz & A. M. Weiner, 1987. Molecular Biology of the Gene, Benjamin-Cummings, Menlo Park California.

    Google Scholar 

  • Weiner, A., P. Deininger & A. Efstratiadis, 1986. Nonviral retroposons: genes, pseudogenes and transposable elements generated by the reverse flow of genetic information. Ann. Rev. Biochem. 55: 631–61.

    Google Scholar 

  • Willard, C., H. Nguyen & C. Schmid, 1987. Existence of three distince Alu subfamilies. J. Mol. Evol. 26: 180–86.

    Google Scholar 

  • Wolfe, S. L., 1972. pp. 418–9 Biology of the Cell, Wadsworth Belmont CA.

    Google Scholar 

  • Yamamoto, T., C. Davis, M. Brown, W. Schneider, M. Casey, J. Goldstein & D. Russel, 1984. The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA Cell 39: 27–38.

    Google Scholar 

  • Xiong, Y. & T. H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9/10: 3353–62.

    Google Scholar 

  • Zuckerkandl, E., G. Latter & J. Jurka, 1989. Maintenance of function without selection. Alu sequences as ‘cheap genes’. J. Mol. Evol. 29: 504–12.

    Google Scholar 

  • Zuker, C., J. Cappello, R. Chisholm & H. Lodish, 1983. A repetitive gene family that is induced during differentiation and by heat shock. Cell. 34: 997–1005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, C.C. Modular transposition and the dynamical structure of eukaryote regulatory evolution. Genetica 86, 127–142 (1992). https://doi.org/10.1007/BF00133716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133716

Keywords

Navigation