Skip to main content
Log in

Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH <3) in Lusatia (Germany)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Twenty-three extremely acidic (pH between 2.5 and 3.5) mining lakes in Lusatia (Germany) were analysed in order to classify their hydrochemistries and to assist the understanding of phytoplankton colonization of these extreme environments. Neither morphometric nor physical parameters influence phytoplankton composition but determine the extent to which the nutrient supply supports the mass development of Chrysophyceae and Chlorophyceae in certain layers of the water (hypo- or epilimnetic chlorophyll maxima and short mass developments). Conventional trophic classification is not readily applicable to these lakes but a chemical classification on the basis of hydrogen, total iron and acidity is proposed. Species of Ochromonas and Chlamydomonas dominate the phytoplankton in fourteen of the most acid lakes; dinoflagellates occurre additionally in four; a more diverse algal assemblage with diatoms and cryptophytes is found in lakes with moderately acidic (pH 5.7–7.0) or alkaline conditions (pH 7.0–9.4). The lake chemistry is the main determinant for the planktonic composition of the water bodies whereas the trophic state mainly determines the level of algal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertano, P., G. Pinto, S. Santisi & R. Taddei, 1981. Spermatozopsis acidophila Kalina (Chlorophyta, Volvocales), a little known algae from highly acidic environments. Giorn. Bot. Ital. 115: 65–76.

    Google Scholar 

  • Albertano, P., G. Pinto & A. Pollio, 1994. Ecophysiology and ultrastructure of an acidophilic species of Ochromonas (Chrysophyceae, Ochromonadales). Arch. Protistenk. 144: 75–82.

    Google Scholar 

  • Almer, B., W. Dickson, C. Ekström, E. Hörnström & U. Miller, 1974. Effects of acidification on Swedish lakes. Ambio 3: 30–36.

    Google Scholar 

  • Andersson, A., S. Falk, G. Samuelsson & A. Hagström, 1989. Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp. Microb. Ecol. 17: 251–262.

    Article  CAS  Google Scholar 

  • Arvola, L., K. Salonen, P. Kankaala & A. Lehtovaara, 1992. Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia 229: 253–269.

    CAS  Google Scholar 

  • Benndorf, J., 1994. Sanierungsmaβnahmen in Binnengewä ssern: Auswirkungen auf die trophische Struktur. Limnologica 24: 121– 135.

    CAS  Google Scholar 

  • Blouin, A. C., 1989. Patterns of plankton species, pH and associated water chemistry in Nova Scotia lakes. Wat. Air Soil Pollut. 46: 343–358.

    Google Scholar 

  • Boavida, M. J. & R. T. Heath, 1986. Phosphatase activity of Chlamydomonas acidophila Negoro (Volvocales, Chlorophyceae). Phycologia 25: 400–404.

    CAS  Google Scholar 

  • DEV, 1986–1993. Deutsche Einheitsverfahren zur Wasser, Abwasserund Schlammuntersuchung. Verlag Chemie, Weinheim.

    Google Scholar 

  • Eriksson, M. O. G., L. Henrikson, B. I. Nilsson, G. Nyman, H. G. Oscarson & A. E. Stenson, 1980. Predatorprey relations, important for biotic changes in acidified lakes. Ambio 9: 248– 249.

    Google Scholar 

  • Geller, W., H. Klapper & M. Schultze, 1998. Natural and anthropogenic sulfuric acidification of lakes. In W. Geller, H. Klapper & W. Salomons (eds), Acidic mining lakes. Springer Verlag: 3–14.

  • Goldman, J. C., W. J. Oswald & D. Jenkins, 1974. The kinetics of inorganic carbon limited algal growth. J. WPCF 46: 554–574.

    CAS  Google Scholar 

  • Gromov, B., V. N. Nikitina, & K.A. Mamkayeva, 1991. Ochromonas vulcania sp. nov. (Chrysophyceae) from the acidic spring on the Kunashir Island (Kurile Islands). Algologia 1: 76–79.

    Google Scholar 

  • Jannson, M., 1981. Induction of high phosphatase activity by aluminium in acid lakes. Arch. Hydrobiol. 93: 32–44.

    Google Scholar 

  • Jones, R. I., 1994. Mixotrophy in planctonic protists as a spectrum of nutritional strategies. Mar. Microb. Food Webs 8: 87–96.

    Google Scholar 

  • Klapper, H. & M. Schultze, 1995. Geogenically acidified mining lakes – living conditions and possibilities of restoration. Int. Revue ges. Hydrobiol. 80: 639–653.

    CAS  Google Scholar 

  • Klapper, H., K. Friese, B. Scharf, M. Schimmele & M. Schultze, 1998. Ways of controlling acid by ecotechnology. In W. Geller, H. Klapper & W. Salomons (eds), Acidic mining lakes. Springer Verlag: 401–416.

  • Kwiatkowski, R. E. & J. C. Roff, 1976. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can. J. Bot. 54: 2546–2561.

    Article  CAS  Google Scholar 

  • Lackey, J. B., 1939. Aquatic life in waters polluted by acid mine waste. Meet. Limnol. Soc. Am. 5: 740–746.

    Google Scholar 

  • Laliberté, G. & J. de la Noüe, 1993. Auto, hetero-and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. J. Phycol. 29: 612–620.

    Article  Google Scholar 

  • Mischke, U., J. Rücker, M. Kapfer & B. Nixdorf, 1994. Besiedlungsstruktur und Interaktionen im Plankton geogen versauerter Tagebaurestseen der Lausitz. Deutsche Gesellschaft f ür Limnologie: Erweiterte Zusammenfassungen der Jahrestagung 1994 in Hamburg: 700–704.

  • Nixdorf, B., J. Rücker, R. Deneke & P. Zippel, 1995a. Limnologische Zustandsanalyse von Standgewä ssern im Scharmützelseegebiet – Teil 1. BTU CottbusUW aktuelle Reihe 1/95.

  • Nixdorf, B., J. Rücker, B. Köcher & R. Deneke, 1995b. Erste Ergebnisse zur Limnologie von Tagebaurestseen in Brandenburg unter besonderer Berücksichtigung der Besiedlung im Pelagial. Limnologie Aktuell No.7: 39–52.

    Google Scholar 

  • Nixdorf, B. K., K. Wollmann & R. Deneke, 1998: Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia (Eastern Germany). In W. Geller, H. Klapper & W. Salomons (eds), Acidic mining lakes. Springer Verlag: 147–168.

  • OECD, 1982. Eutrophication of waters – Monitoring, assessment and control. OECD, Paris.

    Google Scholar 

  • Pinto, G. & R. Taddei, 1978. Le alghe delle acque e dei suoli acidi italiani. Delpinoa 18–19: 77–106.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Rhodes, R. G., 1981. Heterothallism in Chlamydomonas acidophila Negoro isolated from acidic stripmine ponds. Phycologia 20: 81–82.

    Google Scholar 

  • Satake, K. & Y. Saijo, 1974. Carbon dioxide content and metabolic activity of microorganisms in some acid lakes in Japan. Limnol. Oceanogr. 19: 331–338.

    Article  CAS  Google Scholar 

  • Satake, K. & Y. Saijo, 1978. Mechanism of lamination in bottom sediment of the strongly acid Lake Katanuma. Arch. Hydrobiol. 83: 429–442.

    CAS  Google Scholar 

  • Schindler, D. W. & S. K. Holmgren, 1971. Primary production and phytoplankton in the Experimental Lakes Area, northwestern Ontario, and other low carbonate waters, and a liquid scintillation method for determining C14 activity in photosynthesis. J. Fish. Res. Bd. Can. 28: 189–201.

    Google Scholar 

  • Schultze, M., H. Klapper, B. Nixdorf, U. Mischke & U. Grünewald, 1994. Methodik zur limnologischen Untersuchung und Bewertung von Bergbaurestseen. Bund-L änder Arbeitsgruppe Wasserwirtschaftliche Planung.

  • Sheath, R. G., M. Havas, J. A. Hellebust & T. C. Hutchinson, 1982. Effects of long-term natural acidification on the algal communities of tundra ponds at the Smoking Hills, N.W.T., Canada. Can. J. Bot. 60: 58–72.

    Article  CAS  Google Scholar 

  • Steinberg, C., H. Schäfer & W. Beisler, 1998. Do acid-tolerant cyanobacteria exist? Acta hydrochim. hydrobiol. 26: 13–19.

    Article  CAS  Google Scholar 

  • TGL 27885/01, 1982. Fachbereichstandard-Nutzung und Schutz der GewässerStehende Binnengewässer, Klassifizierung, DDR.

  • Twiss, M. R., 1990. Copper tolerance of Chlamydomonas acidophila (Chlorophyceae) isolated from acidic, copper-contaminated soils. J. Phycol. 26: 655–659.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Whitton, B. A. & B. M. Diaz, 1981. Influence of environmental factors on photosynthetic species composition in highly acidic waters. Verh. int. Ver. Limnol. 21: 1459–1465.

    Google Scholar 

  • Yan, N. D., 1979. Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973–1977. Wat. Air Soil Pollut. 11: 43–55.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nixdorf, B., Mischke, U. & Leßmann, D. Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH <3) in Lusatia (Germany). Hydrobiologia 369, 315–327 (1998). https://doi.org/10.1023/A:1017010229136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017010229136

Navigation