Skip to main content
Log in

Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Foraminifera are a dominant group of amoeboid protists in the deep-sea and play possibly a significant role in decomposition processes of incoming organic matter. In order to study the poorly known ecology of these protozoans, microcosm experiments with living bathyal benthic foraminifera have been conducted. Foraminifera from 2880 m and shallower water depths were successfully maintained and their movement patterns investigated. By video documentation, high mean migration speed of 20,02 (N = 22) and 24,48 μm min-1 (N = 10) at 4 °C were found for species such as Hoeglundina elegans and Quinqueloculina seminula from 1847 m and 1921 m water depth, respectively. The results demonstrate that some bathyal foraminifera have migration speeds comparable to those of shallow water species. Environmental factors such as temperature, food concentration and oxygen content showed a marked influence on the migration of some species. An increase in temperature from 10 °C to 15 °C resulted in an increase of 35% in the migration speed of Allogromia spp. However, other species reacted differently. Higher food concentration resulted in a decrease in speed of some species. While in Quinqueloculina lamarckiana speed was not greatly affected by a low oxygen content in the sediment, other foraminifera responded to oxygen depletion by migration to the surface layers. Observations of benthic foraminifera in the laboratory microcosms are discussed in relation to microhabitats and the fate of organic matter on the sea floor and in the sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alongi, D.M., 1992. Bathymetric patterns of deep-sea benthic communities from bathyal to abyssal depths in the western South Pacific (Solomon and Coral Seas). Deep-Sea Res. 39: 549–565.

    Google Scholar 

  • Altenbach, A. V., 1992. Short term processes and patterns in the foraminiferal response to organic flux rates. Mar. Micropaleontol. 19: 119–129.

    Google Scholar 

  • Anderson, O. R, J. J. Lee & W. W. Faber, 1991. Collection, maintenance and culture methods for the study of living foraminifera. In Lee, J. J. & O. R. Anderson (eds), Biology of Foraminifera. Academic Press, London: 335–358.

    Google Scholar 

  • Alve, E. & J. M. Bernhard, 1995. Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar. Ecol. Progr. Ser. 116: 137–151.

    Google Scholar 

  • Barnet, P. R. O., J. Watson & D. Conelly, 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol. Acta 7: 399–408.

    Google Scholar 

  • Bernhard, J. M., 1993. Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulfide. Mar. Micropaleontol. 20: 203–213.

    Google Scholar 

  • Bernhard, J. M., 1996. Microaerophilic and facultative anaerobic benthic foraminifera: a review of experimental and ultrastructural evidence. Rev. Paleobiol. 15: 261–275.

    Google Scholar 

  • Bernhard, J. M. & E. Alve, 1996. Survival, ATP pool and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway): response to anoxia. Mar. Mircropal. 28: 5–17.

    Google Scholar 

  • Bernhard, J.M. & S. S. Bowser, 1992. Bacterial biofilms as a trophic resource for certain benthic foraminifera. Mar. Ecol. Progr. Ser. 83: 263–272.

    Google Scholar 

  • Bernstein, B. B. & J. P. Meador, 1979. Temporal persistence of biological patch structure in an abyssal benthic community. Mar. Biol. 51: 179–183.

    Google Scholar 

  • Bornmalm, L., B. H. Corliss & K. Tedesco, 1997. Laboratory observations of rates and patterns of movement of continental margin benthic foraminifera. Mar. Micropal. 29: 175–184.

    Google Scholar 

  • Boltovskoy, E., 1966. Depth at which Foraminifera can survive in sediments. Cushman Found. Foram. Res. Contr. 17: 43–45.

    Google Scholar 

  • Cedhagen, T., 1996. Foraminiferans as food for cephalaspideans (Gastropoda: Opisthobranchia), with notes on secondary tests around calcareaous foraminiferans. Phuket Mar. Biol. Cent. Spec. Publ. 16: 279–290.

    Google Scholar 

  • Chandler, G.T., Williams D. F. & G. Xiaodong, 1996. Sediment microhabitat effects on carbon isotopic signatures of mircrocosmcultered benthic Foraminifera. Limnol. Oceanogr. 41: 680–688.

    Google Scholar 

  • Corliss, B. H., 1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314: 435–438.

    Google Scholar 

  • Corliss, B. H., 1991. Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Mar. Micropaleontol. 17: 195–236.

    Google Scholar 

  • Corliss, B. & K. A. Silva, 1993. Rapid growth of deep-sea benthic foraminifera. Geology 21: 991–994.

    Google Scholar 

  • Gage, J. D., 1996. Why are there so many species in deep-sea sediments?. J. exp. mar. Biol. Ecol. 200: 257–286.

    Google Scholar 

  • Gooday, A. J., 1986. Meiofaunal foraminiferans from the bathyal Porcupine Seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res. 33: 1345–1373.

    Google Scholar 

  • Gooday, A. J., 1988. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332: 70–73.

    Google Scholar 

  • Gooday, A. J., 1993. Deep-sea benthic foraminiferal species which exploit phytodetritus: characteristic features and controls on distribution. Mar. Micropaleontol. 22: 187–205.

    Google Scholar 

  • Gooday, A. J., 1994. The biology of deep-sea foraminifera: a review of some advances and their applications in paleoceanography. Palaios 9: 14–31.

    Google Scholar 

  • Gooday, A. J. & P. J. D. Lambshead, 1989. Influence of seasonally deposited phytodetritus on benthic foraminiferal populations in the bathyal northeast Atlantic: the species response. Mar. Ecol. Prog. Ser. 58: 53–67.

    Google Scholar 

  • Gooday, A. J. & C. M. Turley, 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Phil. Trans. r. Soc., Lond. 331(119): 119–138.

    Google Scholar 

  • Gooday, A. J., L. A. Levin, P. Linke & T. Heeger, 1992. The role of benthic foraminifera in the deep-sea food webs and carbon cycling. In Rowe, G. T. & V. Pariente (eds), Deep-Sea Food Chains and the Global Carbon Cycle. NATO Asi Ser. C., 360, Kluwer Academic Publishers, Dordrecht, The Netherlands: 63–91.

    Google Scholar 

  • Graf, G. & P. Linke, 1992. Adenosine nucleotides as indicators of deep-sea benthic metabolism. In Rowe, G. T. & V. Pariente (eds), Deep-Sea Food Chains and the Global Carbon Cycle, NATO Asi Ser. C., 360, Kluwer Academic Publishers, Dordrecht, The Netherlands: 92–105.

    Google Scholar 

  • Graf, G., S. A. Gerlach, P. Linke, W. Queisser, W. Ritzrau, A. Scheltz, L. Thompsen & U. Witte, 1995. Benthic-pelagic coupling in the Greenland-Norwegian Sea and its effect on the geological record. Geol. Rdsch. 84: 49–58.

    Google Scholar 

  • Gross, O., 1998. Investigations on autecology, migration and bioturbation of living benthic deep-sea Foraminifera (Protozoa). Ber. Zentr. Meeres-Klimaforsch. Reihe E. Hydrobiol. Fischereiwiss. 15: 1–224.

    Google Scholar 

  • Hannah, F. & R. Rogerson, 1997. The temporal and spatial distribution of foraminiferans in marine benthic sediments of the Clyde Sea area, Scotland. Estuar. coast. shelf. Sci. 44: 377–383.

    Google Scholar 

  • Hannah, F., R. Rogerson & J. Laybourn-Parry, 1994. Respiration rates and biovolumes of common benthic foraminifera (Protozoa). J. mar. biol. Ass. U. K. 74: 301–312.

    Google Scholar 

  • Hemleben, Ch. & H. Kitazato, 1995. Deep-sea foraminifera under long time observation in the laboratory. Deep-Sea Res. 42: 827–832.

    Google Scholar 

  • Hieke, W., P. Halbach, M. Türkay & H. Weikart,1994. Mittelmeer 1993. Cruise No. 25. Meteor-Berichte: 94-3.

  • Jorissen, F. J., H. C. de Stigter & J. G. V. Widmark, 1995. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 26: 3–15.

    Google Scholar 

  • Kaiho, K., 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22: 719–722.

    Google Scholar 

  • Kaminski, M. A., A. M. Al Hassawai & W. Kuhnt, 1994. Seasonality in microhabitats of rose bengal stained deep-sea benthic foraminifera from the New Jersey continental margin, Abstract, Forams 94, Paleobios Suppl.: 39.

  • Kitazato, H., 1981. Observation of behaviour and mode of life of benthic foraminifers in laboratory. Geosci. Rep. Shizuoka Univ. 6: 61–71.

    Google Scholar 

  • Kitazato, H., 1983. Microhabitats of benthic foraminifera and their application to fossil assemblages. In Oertli, H. J. (ed.), Benthos' 83: 2nd Int. Symp. Benthic Foraminifera, Elf Aquitaine, Esso REP, Total DFP. Pau and Bordeaux: 339-344.

  • Kitazato, H., 1988. Locomotion of some benthic foraminifera in and on sediments. J. Foram. Res. 18: 344–349.

    Google Scholar 

  • Kitazato, H. & T. Ohga, 1995. Seasonal changes in deep-sea benthic foraminiferal populations: results of long-term observations at Sagami Bay, Japan. In Sakai, H. & Y. Nozaki (eds), Biochemical Processes and Ocean Flux in the Western Pacific, Terra Sci. Publ., Tokyo: 331–342.

    Google Scholar 

  • Lampitt, R. S., 1990. Directly measured rapid growth of a deep-sea barnacle. Nature 345: 805–807.

    Google Scholar 

  • Langer, M. R. & H. Bagi, 1994. Tubicolous polychaetes as substrates for epizoic foraminifera. J. Micropaleontol. 132.

  • Langer, M. R. & C. A. Gehring, 1993. Bacteria farming: a possible feeding strategy of some smaller, motile Foraminifera. J. Foram. Res. 23: 40–46.

    Google Scholar 

  • Langer, M. R., L. Hottinger & B. Huber, 1989. Functional morphology in low-diverse benthic foraminiferal assemblages from tidal flats of the North Sea. Senckenberg. marit. 20: 81–99.

    Google Scholar 

  • Lassere, P., 1976. Metabolic activities of benthic microfauna and meiofauna, In McCave, I. N. (ed.), The Benthic Boundary Layer. Plenum Press, New York, London: 95–142.

    Google Scholar 

  • Lee, J. J., 1974. Towards understanding the niche of foraminifera. In Hedley, R. & C. G. Adams (eds), Foraminifera. Vol. 1. Academic Press, London: 201–260.

    Google Scholar 

  • Levin, L. A., 1991. Interactions between metazoans and large, agglutinating protozoans: implications for the community structure of deep-sea benthos. Am. Zool. 31: 886–900.

    Google Scholar 

  • Linke, P., 1992. Metabolic adaptations of deep-sea benthic foraminifera to seasonality varying food input. Mar. Ecol. Prog. Ser.: 51-63.

  • Linke, P. & G. F. Lutze, 1993. Microhabitat preferences of benthic foraminifera-a static concept or a dynamic adaptation to optimize food acquisition? Mar. Micropaleontol. 20: 215–234.

    Google Scholar 

  • Linke, P., A. V. Altenbach, G. Graf & T. Heeger, 1995. Response of deep-sea benthic foraminifera to a simulated sedimentation event. J. Foram. Res. 25: 75–82.

    Google Scholar 

  • Loubere, P., A. Gary & M. Lagoe, 1993. Sea-bed biogeochemistry and benthic foraminiferal bathymetric zonation on the slope of the Northwest Gulf of Mexico. Palaios 8: 439–449.

    Google Scholar 

  • Loubere, P., P. Meyers & A. Gary, 1995. Benthic foraminiferal microhabitat selection, carbon isotope values and association with larger animals: a test with Uvigerina peregrina. J. Foram. Res. 25: 83–95.

    Google Scholar 

  • Lutze, G. F. & H. Thiel, 1989. Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis. J. Foram. Res. 19: 153–158.

    Google Scholar 

  • Mackensen, A., H. W. Hubberten, T. Bickert, G. Fischer & D. K. Fütterer, 1993. The 13C in benthic foraminiferal tests of Fontbotia Wuellerstorfi (Schwager) relative to the 13C of dissolved inorganic carbon in southern ocean deep water: implications for glacial ocean circulation models. Paleoceanography 8: 587–610.

    Google Scholar 

  • Meyers, M. B., E. N. Powell & H. Fossing, 1988. Movement of oxybiotic and thiobiotic meiofauna in response to changes in pore-water oxygen and sulfide gradients around macro-infaunal tubes. Mar. Biol. 98: 395–414.

    Google Scholar 

  • Moodley, L. & C. Hess, 1992. Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biol. Bull. 183: 94–98.

    Google Scholar 

  • Moodley, L., P. M. J. Herman, J. J. Middelburg & C. H. R. Heip, 1996. Comment: subsurface activity of benthic foraminifera. Mar. Ecol. Prog. Ser. 145: 303–304.

    Google Scholar 

  • Moodley, L., B. E. M. Schaub, G. J. Van der Zwaan & P. M. J. Herman, 1998. Tolerance of benthic foraminifera (Protista: Sarcodina) to hydrogen sulphide. Mar. Ecol. Prog. Ser. 169: 77–86.

    Google Scholar 

  • Moodley, L., G. J. Van der Zwaan, P. M. J. Herman, L. Kempers & P. Von Breugel, 1997. Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Mar. Ecol. Prog. Ser. 158: 151–163.

    Google Scholar 

  • Pfannkuche, O., 1993. Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47 º N, 20 º W. Deep-Sea Res. 40: 135–149.

    Google Scholar 

  • Pfannkuche, O., W. Balzer & F. Schott, 1994. Carbon-cycle and transport of water masses in the North Atlantic-the winter situation, Cruise No. 27. 'Meteor'-Berichte: 94-6.

  • Poremba, K., 1994. Simulated degradation of phytodetritus in deepsea sediments of the NE Atlantic (47 º N, 19 º W). Mar. Ecol. Progr. Ser. 105: 291–299.

    Google Scholar 

  • Price, R. & R. M. Warwick, 1980. The effect of temperature on the respiration rate of meiofauna. Oecologia 44: 145–148.

    Google Scholar 

  • Rex, M. A., 1997. An oblique slant on deep-sea biodiversity. Nature 385: 577–578.

    Google Scholar 

  • Severin, K. P., 1987. Laboratory observations of the rate of subsurface movement of a small miliolid foraminifer. J. Foram. Res. 17: 110–116.

    Google Scholar 

  • Severin, K. P. & M. G. Erskian, 1981. Laboratory experiments on the vertical movement of Quinqueloculina impressa Reuss through sand. J. Foram. Res. 11: 133–136.

    Google Scholar 

  • Severin, K. P., S. J. Culver & C. Blanpied, 1982. Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer in fine-grained sediment. Sedimentology 29: 897–901.

    Google Scholar 

  • Silva, K. A., B. H. Corliss, A. E. Rathburn & R. C. Thunell, 1996. Seasonality of living benthic foraminifera from the San Pedro Basin, California Borderland. J. Foram. Res. 26: 71–93.

    Google Scholar 

  • Smith, C. R., 1994. Tempo and mode in deep-sea benthic ecology: punctuated equlibrium revisited. Palaios 9: 3–13.

    Google Scholar 

  • Smith, K. L., R. S. Kaufmann & R. J. Baldwin, 1994. Coupling of near-bottom pelagic processes at abyssal depths in the eastern North Pacific Ocean. Limnol. Oceanogr. 39: 1101–1118.

    Google Scholar 

  • Stigter, H. C., 1996. Recent and fossil benthic foraminifera in the Adriatic Sea: distributional patterns in relation to organic flux and oxygen concentration at the seabed. Ph D. Thesis. Univ. Utrecht, Geologica Ultraiectina 144: 1–254.

    Google Scholar 

  • Thiel, H., 1983. Meiobenthos and nanobenthos of the deep-sea. In Rowe, G. T. (ed.), The Sea, Vol. 8. Deep-Sea Biology, John Wiley, New York: 157–230.

    Google Scholar 

  • Thiel, H., O. Pfannkuche, G. Schriever, K. Lochte, A. J. Gooday, C. Hemleben, R. F. C. Montoura, C. M. Turley, J. W. Patching & F. Riemann, 1988. Phytodetritus on the deep-sea floor in a Central Oceanic Region of the Northeast Atlantic. Biol. Oceanogr. 6: 203–239.

    Google Scholar 

  • Thistle, D., 1983. The role of biologically produced habitat heterogeneity in deep-sea diversity maintenance. Deep-Sea Res. 30: 1234–1245.

    Google Scholar 

  • Travis, J. J. & S. S. Bowser, 1991. The motility of foraminifera. In Lee, J. J. & O. R. Anderson (eds), The Biology of Foraminifera. Academic Press, London: 91–155.

    Google Scholar 

  • Turley, C. M. & M. Carstens, 1991. Pressure tolerance of oceanic flagellates: implications for remineralization of organic matter. Deep-Sea Res. 38: 403–413.

    Google Scholar 

  • Turley, C. M., K. Lochte & D. J. Patterson, 1988. A barophilic flagellate isolated from 4500 m in the mid-North Atlantic. Deep-Sea Res. 35: 1079–1092.

    Google Scholar 

  • Van Gemerden, H., C. S. Tughan, R. deWit & R. Herbert, 1989. Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. Microbiol. Ecol. 62: 87–102.

    Google Scholar 

  • Weinberg, J. R., 1991. Rates of movement and sedimentary traces of deep-sea foraminifera and mollusca in the laboratory. J. Foram. Res. 3: 213–217.

    Google Scholar 

  • Wetmore, K. L., 1988. Burrowing and sediment movement by benthic foraminifera, as shown by time-lapse cinematography. Rev. Paléobiol., Vol. Spéc. 2, Benthos 86: 921–927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, O. Influence of temperature, oxygen and food availability on the migrational activity of bathyal benthic foraminifera: evidence by microcosm experiments. Hydrobiologia 426, 123–137 (2000). https://doi.org/10.1023/A:1003930831220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003930831220

Navigation