Skip to main content
Log in

Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Acidic mining lakes (ML) in Lusatia (Germany) are characterised by their geogenically determined chemistry. The present study describes the structure, main components and relationships within the food webs of three acidic mining lakes with different pH values (ML 111: pH 2.6; ML 117: pH 2.8; ML Felix: pH 3.6) in order to show their typical characteristics. The investigation covered the period 1995–1997. The number of species and the biomass are both low, but increase with increasing pH. Planktonic components in the most acidic ML 111 (pH 2.6–2.9) comprise bacteria, Ochromonas spp. and Chlamydomonas spp. and a few rotifers (E. worallii, C. hoodi). Heliozoans are the top-predators. In ML 117 (pH 2.8–3) Gymnodinium sp., ciliates, the rotifer B. sericus and the pioneer crustacean Chydorus sphaericus join the pelagial community. Heliozoans were not found in ML 117 or ML Felix (pH 3.4–3.8). ML Felix had the most taxa. The benthic food chain of all three lakes includes phytobenthic algae as producers, chironomids as primary consumers and corixids as top predators in the profundal. Corixids predate on small cladocerans inhabiting the pelagial in lakes with a pH above 2.8 such as ML Felix. They invade the pelagial and act as a connecting link between the benthic and the pelagic food chains, which are isolated in lakes with a lower pH. Occasionally primary producers and consumers were abundant in all three lakes. These organisms do not depend on the degree of acidity, but on the availability of essential ressources. Mass variations covered up any seasonal variation in the extremely acidic ML 111 (0.9 mm3 l−1), while in the other two lakes seasonal patterns of biomass were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almer, B., W. Dickson, C. Ekström, E. Hörnström & U. Miller, 1974. Effects of acidification on Swedish lakes. Ambio 3: 30–36.

    Google Scholar 

  • Almer, B., W. Dickson, C. Ekström & E. Hörnström, 1978. Sulfur pollution and the aquatic ecosystem. In Nriagu, J. O. (ed.), Sulfur in the Environment (Part 2). Ecological Impacts, New York: 271-311.

  • Arvola, L., K. Salonen, P. Kankaala & A. Lehtovaara, 1992. Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia 229: 253–269.

    Google Scholar 

  • Bittl, T. & H.-D. Babenzien, 1996. Heterotrophe Aktivität des Bakterioplanktons in einem sauren Gewässer. Dt. Ges. f. Limnol. Erw. Zus. d. Jahrestagung 1995 in Berlin 2: 918–922.

    Google Scholar 

  • Blouin, A. C., 1989. Patterns of plankton species, pH and associated water chemistry in Nova Scotia lakes. Wat. Air Soil Pollut. 46: 343–358.

    Google Scholar 

  • Brett, M. T., 1989. The distribution of free swimming macroinvertebrates in acidic lakes of Maine: the role of fish predation. Aquat. Fenn. 19: 113–118.

    Google Scholar 

  • Brakke, D. F., J. P. Baker, J. Böhmer, A. Hartmann, M. Havas, A. Jenkins, C. Kelly, S. J. Ormerod, T. Paces, R. Putz, B. O. Rosseland, D. W. Schindler & H. Segner, 1992. Group Report: Physiological and ecological effects of acidification on aquatic biota. In Steinberg, C. E. W. & R. F. Wright (eds), Acidification of Freshwater Ecosystems. Implications for the Future. John Wiley & Sons, Chichester: 275–312.

    Google Scholar 

  • Deneke, R., 2000. Review of rotifers and crustaceans in highly acidic environments of pH values ?3. Hydrobiologia 433: 167–172.

    Google Scholar 

  • Engelmann, H.-D., 1973. Eine Lichtfalle für den Insektenfang unter Wasser. Entom. Abh.Mus. Tierk. 39: 224–226.

    Google Scholar 

  • Evans, R. A., 1989. Response of limnetic insect populations of two acidic, fishless lakes to liming and Brook trout (Salvelinus fontinalis). Can. J. Fish. aquat. Sci. 46: 342–351.

    Google Scholar 

  • Geller, W., H. Klapper & M. Schultze, 1998. Natural and anthropogenic sulfuric acidification of lakes. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer Verlag, Berlin, Heidelberg: 3–14.

    Google Scholar 

  • Goldman, J. C., W. J. Oswald & D. Jenkins, 1974. The kinetics of inorganic carbon limited algal growth. Journal WPCF 46: 554–574.

    Google Scholar 

  • Gyure, R. A., A. Konopka, A. Brooks & W. Doemel, 1987. Algal and bacterial activities in acidic (pH 3) strip mine lakes. Appl. environ. Microbiol. 53: 2069–2076.

    Google Scholar 

  • Heins, A., 1993. Zur ökologischen Bedeutung der Corixiden (Hemiptera, Heteroptera) im Pelagial der 'Großen Fuchskuhle', mit Anmerkungen zu Chaoborus (Diptera, Chaoboridae). Diplomarbeit, FU Berlin: 55 pp.

  • Henrikson, L. & H. G. Oscarson, 1981. Corixids (Hemiptera-Heteroptera), the new top-predators in acidified lakes. Verh. int. Ver. Limnol. 21: 1616–1620.

    Google Scholar 

  • Henrikson, L. & H. G. Oscarson, 1984. Lime influence on macroinvertebrate zooplankton predators. Rep. Inst. Freshwater Res. Drottningholm 61: 93–103.

    Google Scholar 

  • Henrikson, L. & H. G. Oscarson, 1985. Waterbugs (Corixidae, Hemiptera-Heteroptera) in acidified lakes, habitat selection and adaptations. Ecol. Bull. 37: 232–238.

    Google Scholar 

  • Klapper, H. & M. Schultze, 1995. Geogenically acidified Mining lakes-living conditions and possibilities of restoration. Int. Rev. ges. Hydrobiol. 80: 639–653.

    Google Scholar 

  • Kwiatowski, R. E. & J. C. Roff, 1976. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can. J. Bot. 54: 2546–2561.

    Google Scholar 

  • Laliberté, G. & J. de la Noüe, 1993. Auto-, hetero-and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. J. Phycol. 29: 612–620.

    Google Scholar 

  • Lessmann, D. & B. Nixdorf, 1997. Charakterisierung und Klassifizierung von Tagebauseen der Lausitz anhand morphometrischer Kriterien, physikalisch-chemischer Parameter und der Phytoplanktonbesiedlung. In Deneke, R. & B. Nixdorf (eds), Gewässerreport (Teil III). BTUC-AR 5/97: 9-18.

  • Locke, A., 1992. Factors influencing community structure along stress gradients: zooplankton responses to acidification. Ecology 73: 903–909.

    Google Scholar 

  • McConathy, J. R. & J. B. Stahl, 1982. Rotifera in the plankton and among filamentous algal clumps in 16 acid strip mine lakes. Trans. III Acad. Sci. 75: 85–90.

    Google Scholar 

  • Mischke, U., M. Kapfer & H. Krumbeck, 1997. Wachstums-und photosynthetisch limitierende Faktoren in extrem sauren Tagebaurestseen. Dt. Ges. f. Limnol. Erw. Zus. d. Jahrestagung 1996 in Frankfurt/M: 508-512.

  • Morling, G. & B. Peljer, 1990. Acidification and zooplankton variation in some West-Swedish lakes 1966-1983. Limnologica 20: 307–318.

    Google Scholar 

  • Nixdorf, B. & S. Hoeg, 1993. Phytoplankton community structure, succession and chlorophyll content in LakeMüggelsee from 1979 to 1990. Int. Rev. ges. Hydrobiol. 78: 359–377.

    Google Scholar 

  • Nixdorf, B. & M. Kapfer, 1998. Stimulation of phototrophic pelagic and benthic metabolism close to sediments in acidic mining lakes. Wat. Air Soil Pollut. 108: 317–330.

    Google Scholar 

  • Nixdorf, B., U. Mischke & D. Lessmann, 1998 a. Chrysophytes and chlamydomonads: Pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 315–327.

    Google Scholar 

  • Nixdorf, B., K. Wollmann & R. Deneke, 1998 b. Ecological potentials for planktonic variation and food web interactions in extremly acidic mining lakes in Lusatia. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer Verlag, Berlin, Heidelberg: 147–167.

    Google Scholar 

  • Nyman, H. G., H. G. Oscarson & J. A. E. Stenson, 1985. Impact of invertebrate predators on the zooplankton composition in acid forest lakes. Ecol. Bull. 37: 239–243.

    Google Scholar 

  • Olaveson, M. M. & C. Nalewajko, 1994. Acid rain and freshwater algae. Arch. Hydrobiol. Beih. 42: 99–123.

    Google Scholar 

  • Packroff, G., 2000. Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433: 157–166.

    Google Scholar 

  • Page, C. & F. J. Siemensma, 1991. Nackte Rhizopoda und Heliozoa. Gustav Fischer Verlag, Stuttgart, New York: 297 pp.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Scharf, B., 1998. In BTUC (1998): BMBF-Verbundvorhaben LENAB: Leitbilder für naturnahe Bereiche. Brandenburgische Technische Universität Cottbus. Abschlußbericht: Gesamtbericht (88 S.) und Teilprojekt 3 (110 S.)

  • Schmidt-Halewicz, S., 1996. Konsequenzen der Gewässerversauerung für das mikrobielle Nahrungsnetz im See. Dt. Ges. f. Limnol. Erw. Zus. d. Jahrestagung 1995 in Berlin: 938-944.

  • Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.

    Google Scholar 

  • Schindler, D. W. & S. K. Holmgren, 1971. Primary production and phytoplankton in the Experimental Lakes Area, northwestern Ontario, and other low carbonate waters, and a liquid scintillation method for determining 14C activity in photosynthesis. J. Fish. Res. Bd Can. 28: 189–201.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Vangenechten, J. H. D., S. Van Puymroeck & O. L. J. Vanderborght, 1979. Effects of pH on the uptake of sodium in the waterbugs Corixa dentipes (Thoms.) and Corixa punctata (Illig.) (Hemiptera, Heteroptera). Comp. Biochem. Physiol. 64: 509–521.

    Google Scholar 

  • Winberg, G. G., 1971. Symbols, units and conversion factors in studies of freshwater productivity. London: IBP Control Office: 1–23.

    Google Scholar 

  • Woelfl, S., in press. Limnology of sulfur acidic lignite mining lakes. Biological properties: Plankton structure of an extreme habitat. Verh. int. Ver. Limnol.

  • Woelfl, S., B. Zippel & G. Packroff, 1998. Planktongesellschaften der mitteldeutschen Tagebaurestseen. Dt. Ges. f. Limnol. Erw. Zus. d. Jahrestagung 1997 in Frankfurt/M: 376-380.

  • Wollmann, K., 1998: Zur Ökologie der Corixiden (Hemiptera, Heteroptera) in Tagebauseen der Lausitz. Dt. Ges. f. Limnol. Erw. Zus. d. Jahrestagung 1997 in Frankfurt/M: 535-539.

  • Wollmann, K., 2000. Corixidae (Hemiptera, Heteroptera) in acidic mining lakes with pH < 3 of Lusatia (Germany). Hydrobiologia 433: 181–183.

    Google Scholar 

  • Yan, N. D., 1979. Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973-1977. Wat. Air Soil Pollut. 11: 43–55.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollmann, K., Deneke, R., Nixdorf, B. et al. Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4). Hydrobiologia 433, 3–14 (2000). https://doi.org/10.1023/A:1004060732467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004060732467

Navigation