Skip to main content
Log in

Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤3

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Most of the flooded, open-cast lignite mining lakes of Lusatia (Germany) impacted by the oxidation of iron sulphides (pyrite and marcasite) are extremely acidic. Of 32 lakes regularly studied from 1995 to 1998, 14 have a pH <3 (median pH 2.3–2.9). These lakes are typically buffered by high concentrations of Fe (III) and have high conductivity (1000–5000 μS cm−1). Concentrations of dissolved inorganic carbon (DIC) and phosphorus are typically extremely low. These factors result in a very different environment for algae than found in neutral and acid-rain impacted lakes. The planktonic algal flora is generally dominated by flagellates belonging to genera of Chlorophyta (Chlamydomonas), Heterokontophyta of the class Chrysophyceae (Ochromonas, Chromulina), Cryptophyta (Cyathomonas) and Euglenophyta (Lepocinclis, Euglena mutabilis). Near-spherical non-motile Chlorophyta (Nanochlorum sp.), Heterokontophyta of the class Bacillariophyceae (Eunotia exigua, Nitzschia), Dinophyta (Gymnodinium, Peridinium umbonatum), other Chlorophyta (Scourfieldia cordiformis) and Cryptophyta (Rhodomonas minuta) are also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertano, P., 1995. Microalgae from sulphuric acid environments. In Wiessner, W., E. Schnepf & R. C. Starr (eds), Algae, Environment and Human Affairs. Biopress Ltd., Bristol: 19–39.

    Google Scholar 

  • Albertano, P., G. Pinto, A. Pollio & R. Taddei, 1991a. Physiological, biochemical and ultrastructural characters of some strains of Viridiella fridericiana (Chlorophyta, Chlorococcales). Arch. Protistenkd. 139: 117–123.

    Google Scholar 

  • Albertano, P., A. Pollio & R. Taddei, 1991b. Viridiella fridericiana (Chlorococcales, Chlorophyta), a new genus and species isolated from extremely acidic environments. Phycologia 30: 346–354.

    Google Scholar 

  • Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), 1978-1999. Die Süßwasserflora von Mitteleuropa. Fischer, Stuttgart.

    Google Scholar 

  • Evangelou, V. P., 1994. Pyrite Oxidation and its Control. CRC Press, New York.

    Google Scholar 

  • Friedl, T., 1997. The evolution of the green algae. In Bhattacharaya, D. (ed.), Origin of Algae and Their Plastids. Springer, Berlin: 87–101.

    Google Scholar 

  • Fyson, A. & J. Rücker, 1998. Die Chemie und Ökologie des Lugteichs-eines extrem sauren, meromiktischen Tagebausees. BTU Cottbus, Aktuelle Reihe 5/98: 18–34.

    Google Scholar 

  • Geller, W., H. Klapper & M. Schultze, 1998. Natural and anthropogenic sulfuric acidification of lakes. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, Berlin: 3–14.

    Google Scholar 

  • Hein, G., 1953. Ñber Euglena mutabilis und ihr Verhalten zu sauren Medien. Arch. Hydrobiol. 47: 516–525.

    Google Scholar 

  • Hill, W. R., 1996. Effects of light. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 121–148.

    Google Scholar 

  • Huber-Pestalozzi, G. (ed), 1938-1983. Das Phytoplankton des Süßwassers. Schweizerbart, Stuttgart.

    Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology. Vol. II. J. Wiley & Sons, New York.

    Google Scholar 

  • Kapfer, M., 1998. Das Litoral von extrem sauren Tagebauseen als Lebensraum für benthische Aufwuchsalgen. BTU Cottbus, Aktuelle Reihe 5/98: 35–49.

    Google Scholar 

  • Kapfer, M., B. Nixdorf, A. Fyson & B. Bartenbach, 1999. Die Bedeutung des Benthals für das limnologische Entwicklungspotential von Tagebauseen. In Hüttl, R. F., D. Klem & E. Weber (eds), Rekultivierung von Bergbaufolgelandschaften. De Gruyter, Berlin: 206–218.

    Google Scholar 

  • Krumbeck, H., B. Nixdorf & A. Fyson, 1998. Ressourcen der Bioproduktion in extrem sauren Tagebauseen der Lausitz-Angebot, Verfügbarkeit und Umsetzung. BTU Cottbus, Aktuelle Reihe 5/98: 7–17.

    Google Scholar 

  • Kümmerlin, R., 1990. Plankton-Gemeinschaften als Bioindikatoren für Stehgewässer. Ökologie u. Naturschutz 3: 227–241.

    Google Scholar 

  • Lackey, J. B., 1939. Aquatic life in waters polluted by acid mine waste. U.S. Publ. Health Rep. 54: 740–746.

    Google Scholar 

  • Lessmann, D. & B. Nixdorf, 1998. Morphologie, hydrochemische Klassifizierung und Phytoplanktonbesiedlung von Tagebauseen der Lausitz. GBL-Gemeinschaftsvorhaben (Grundwassergüteentwicklung in den Braunkohlegebieten der neuen Länder) 5: 195–201.

    Google Scholar 

  • Lessmann, D. & B. Nixdorf, 2000. Acidification control of phytoplankton diversity, spatial distribution and trophy in mining lakes. Verh. int. Ver. Limnol. 27.

  • Lessmann, D., R. Chmielewski & M. Kühne, 1997. Probenahmetechniken in Tagebaurestseen der Lausitz. GBL-Gemeinschaftsvorhaben (Grundwassergüteentwicklung in den Braunkohlegebieten der neuen Länder) 4: 50–55.

    Google Scholar 

  • Lessmann, D., R. Deneke, R. Ender, M. Hemm, M. Kapfer, H. Krumbeck, K. Wollmann & B. Nixdorf, 1999. Lake Plessa 107 (Lusatia, Germany)-an extremely acidic shallow mining lake. Hydrobiologia 408/409 (Dev. Hydrobiol. 143): 293–299.

    Google Scholar 

  • Negoro, K., 1944. Untersuchungen über die Vegetation der mineralogen-azidotrophen Gewässer Japans. Sci. Rep. Tokyo Bunrika Daigaku B 101: 322–350.

    Google Scholar 

  • Nixdorf, B., U. Mischke & D. Lessmann, 1998a. Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 315–327.

    Google Scholar 

  • Nixdorf, B., K. Wollmann & R. Deneke, 1998b. Ecological potential for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, Berlin: 147–167.

    Google Scholar 

  • Olaveson, M. M. & C. Nalewajko, 1994. Acid rain and freshwater algae. Arch. Hydrobiol. Beih. 42: 99–123.

    Google Scholar 

  • Olaveson, M. M. & C. Nalewajko, 2000. Effects of acidity on the growth of two Euglena species. Hydrobiologia 433: 39–56.

    Google Scholar 

  • Pascher, A., 1925. Die Süßwasserflora Deutschlands, Österreichs und der Schweiz. Bd. 12: Cyanophyceae. Fischer, Jena.

    Google Scholar 

  • Pentecost, A., 1982. The distribution of Euglena mutabilis in sphagna, with reference to the Malham Tarn North Fen. Field Studies 5: 591–606.

    Google Scholar 

  • Pietsch, W., 1998. Colonization and development of vegetation in mining lakes of the Lusatian lignite area in dependance on water genesis. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, Berlin: 169–193.

    Google Scholar 

  • Rothhaupt, K. O., 1997. Nutrient turnover by freshwater bacterivorous flagellates: differences between a heterotrophic and a mixotrophic chrysophyte. Aquat. Microbiol. Ecol. 12: 65–70.

    Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1988. Phagotrophic phytoflagellates. Adv. Microbiol. Ecol. 10: 167–192.

    Google Scholar 

  • Schwerdtfeger, F., 1975. Ökologie der Tiere. III. Synökologie. Parey, Hamburg.

    Google Scholar 

  • Sheath, R. G., M. Havas, J. A. Hellebust & T. C. Hutchinson, 1982. Effects of long-term natural acidification on the algal communities of tundra ponds at the smoking hills, N.W.T., Canada. Can. J. Bot. 60: 58–72.

    Google Scholar 

  • Sorokin, Y. I., 1999. Aquatic Microbial Ecology. Backhuys Publ., Leiden.

    Google Scholar 

  • Steinberg, C. E. W., H. Schaefer & W. Beisker, 1998a. Do acid-tolerant cyanobacteria exist? Acta hydrochim. hydrobiol. 26: 13–19.

    Google Scholar 

  • Steinberg, C. E. W., H. Schaefer, J. Tittel & W. Beisker, 1998b. Phytoplankton composition and biomass spectra created by flow cytometry and zooplankton composition in mining lakes of different states of acidification. In Geller, W., H. Klapper & W. Salomons (eds), Acidic Mining Lakes. Springer, Berlin: 127–145.

    Google Scholar 

  • Tuchman, N. C., 1996. The role of heterotrophy in algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 299–319.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Van den Hoek, C., D. G. Mann & H. M. Jahns, 1995. An Introduction to Phycology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Whitton, B. A., 2000. Soils and rice-fields. In Whitton, B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht: 233–255.

    Google Scholar 

  • Whitton, B. A. & B. M. Diaz, 1981. Influence of environmental factors on photosynthetic species composition in highly acidic waters. Verh. int. Ver. Limnol. 21: 1459–1465.

    Google Scholar 

  • Whitton, B. A. & K. Satake, 1996. Phototrophs in highly acidic waters: An overview. Proceedings International Symposium on Acidic Deposition and its Impacts, Tsukuba, Japan, 10-12 Dec. 1996: 204-211.

  • Woelfl, S. & B. A. Whitton, 2000. Sampling, preservation and quantification of biological samples from highly acidic environments (pH ? 3). Hydrobiologia 433: 173–180.

    Google Scholar 

  • Wollmann, K., 1998. Occurrence of Corixidae (Heteroptera) in acid mining lakes of Lusatia (Brandenburg, Germany). Lauterbornia 32: 17–24.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessmann, D., Fyson, A. & Nixdorf, B. Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤3. Hydrobiologia 433, 123–128 (2000). https://doi.org/10.1023/A:1004018722898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004018722898

Navigation