Skip to main content
Log in

Single crystal surfaces probed by polarized nuclei

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance has developed into a very powerful technique to study the structure and dynamics of atomic and molecular systems, both in liquid and solid phase. However the investigation of single crystal surfaces with “conventional” NMR methods is essentially impossible due to the small sample size of less than 1015 sites on a cm2. To overcome this for the important class of alkali adsorbates on metals and semiconductors, two methods are presented. Common to both is the preparation of a highly nuclear spin polarized atomic beam of 6Li in the one case and 8Li in the other. The latter isotope is radioactive and undergoes a \beta‐decay with a halflife of 0.84 s. Li adsorbed on the close packed Ru(001) surface is investigated. The T{in1} relaxation rate is the main observable and is used to deduce the local electronic density of states (LDOS(EF,r=0)) and the Li diffusion barriers at low and high adsorbate coverage. The second experiment uses 6Li as an adsorbate, also studied on Ru(001). The nuclear polarization is measured by beam foil spectroscopy. A novel particle detected (photon counting) Fourier‐Transform NMR technique is demonstrated, by observing the time dependent flux of circularly polarized light emitted behind the foil after a 90\circ‐pulse has been employed at the surface. Development and prospects of the latter technique are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abragam, The Principles of Nuclear Magnetism(Oxford University Press, Oxford, 1961).

    Google Scholar 

  2. C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer, Berlin, 1989).

    Google Scholar 

  3. P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy(Clarendon Press, Oxford, 1993); 1st ed. 1991.

    Google Scholar 

  4. E.O. Stejskal and J.D. Memory, High Resolution NMR in the Solid State(Oxford University Press, Oxford, 1994).

    Google Scholar 

  5. C.P. Slichter, Ann. Rev. Phys. Chem. 37 (1986) 25.

    Article  Google Scholar 

  6. W. Widdra, M. Detje, H.-D. Ebinger, H.J. Jänsch, W. Preyß, H. Reich, R. Veith, D. Fick, M. Röckelein and H.-G. Völk, Rev. Sci. Instrum. 66 (1995) 2465.

    Article  ADS  Google Scholar 

  7. M. Detje, M. Röckelein, W. Preyß, H.-D. Ebinger, H.J. Jänsch, H. Reich, R. Veith, W. Widdra and D. Fick, J. Vac. Sci. Technol. A 13 (1995) 2532.

    Article  ADS  Google Scholar 

  8. H.J. Jänsch, H. Arnolds, H.D. Ebinger, C. Polenz, B. Polivka, G.J. Pietsch, W. Preyß, V. Saier, R. Veith and D. Fick, Phys. Rev. Lett. 75 (1995) 120.

    Article  ADS  Google Scholar 

  9. H.-D. Ebinger, H.J. Jänsch, C. Polenz, B. Polivka, W. Preyß, V. Saier, R. Veith and D. Fick, Phys. Rev. Lett. 76 (1996) 656.

    Article  ADS  Google Scholar 

  10. H. Arnolds, PhD Thesis, Philipps-Universität (1996).

  11. H. Ackermann, P. Heitjans and H.-J. Stöckmann, in: Hyperfine Interactions of Radioactive Nuclei, ed. J. Christiansen (Springer, Berlin, 1983).

    Google Scholar 

  12. D.L. Doering and S. Semancik, Surf. Sci. 175 (1986) L730.

    Article  Google Scholar 

  13. H.J. Jänsch, C. Huang, A. Ludviksson and R.M. Martin, Surf. Sci. 315 (1994) 9.

    Article  Google Scholar 

  14. M. Gierer, H. Over, H. Bludau and G. Ertl, Phys. Rev. B 52 (1995) 2927.

    Article  ADS  Google Scholar 

  15. D. Fick, Appl. Phys. A 49 (1989) 343.

    Article  ADS  Google Scholar 

  16. W. Mannstadt and G. Grawert Phys. Rev. B 52 (1995) 5343.

    Article  ADS  Google Scholar 

  17. A. Körblein, P. Heitjans, H.-J. Stöckmann, F. Fujara, H. Ackermann, W. Buttler, K. Dörr and H. Grupp, J. Phys. F 15 (1985) 561.

    Article  ADS  Google Scholar 

  18. D.M. Riffe, G.K. Wertheim and P.H. Citrin, Phys. Rev. Lett. 64 (1990) 571.

    Article  ADS  Google Scholar 

  19. G.K. Wertheim, D.M. Riffe and P.H. Citrin, Phys. Rev. B 49 (1994) 4834.

    Article  ADS  Google Scholar 

  20. A.B. Andrews, D.M. Riffe and G.K. Wertheim, Phys. Rev. B 49 (1994) 8396.

    Article  ADS  Google Scholar 

  21. J. Bormet, J. Neugebauer and M. Scheffler, Phys. Rev. B 49 (1994) 17242.

    Article  ADS  Google Scholar 

  22. G.A. Benesh and D.A. King, Chem. Phys. Lett. 191 (1992) 315.

    Article  ADS  Google Scholar 

  23. T. Minamisono, T. Ohtsubo, I. Minami, S. Fukuda, A. Kitagawa, M. Fukuda, K. Matsuta, Y. Nojiri, S. Takeda, H. Sagawa and H. Kitagawa, Phys. Rev. Lett. 69 (1992) 2058.

    Article  ADS  Google Scholar 

  24. N. Bloembergen, E.M. Purcell and R.V. Pound, Phys. Rev. 73 (1948) 679.

    Article  ADS  Google Scholar 

  25. P.M. Richards, Solid State Commun. 25 (1995) 1019.

    Article  Google Scholar 

  26. W. Küchler, P. Heitjans, A. Payer and R. Schöllborn, Solid State Ionics 70/71 (1994) 434.

    Article  Google Scholar 

  27. H.P. Bonzel, A.M. Bradshaw and G. Ertl (eds.), Physics and Chemistry of Alkali Adsorption(Elsevier, Amsterdam, 1989).

    Google Scholar 

  28. M. Gierer, H. Over, H. Bludau and G. Ertl, Surf. Sci. 337 (1995) 198.

    Article  Google Scholar 

  29. R. Gomer, Rep. Prog. Phys. 53 (1990) 917.

    Article  ADS  Google Scholar 

  30. M. Kaack and D. Fick, Phys. Rev. B 51 (1995) 17902.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jänsch, H. Single crystal surfaces probed by polarized nuclei. Hyperfine Interactions 106, 219–228 (1997). https://doi.org/10.1023/A:1012658411960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012658411960

Keywords

Navigation