Skip to main content
Log in

Resonant formation measurements of \(dt\mu \) via time of flight

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Solid hydrogen in the form of an inhomogeneous layered target offers several experimental advantages when compared with liquid or gas. Beams of non-thermalized muonic hydrogen atoms allow us to explore resonant molecular ion formation processes near eV kinetic energies. Isotopically specific layers make it possible to separate competing and confusing interactions and to employ the time of flight for comparison with predictions based on theoretical energy dependences. Unambiguous charged fusion product detection simplifies absolute intensity measurements.

The systematic uncertainties encountered in resonant molecular ion formation measurements, using solid hydrogen target layers, are being investigated with simulations which use the many calculated energy-dependent rates and cross-sections which are now available. The importance of the rates for processes such as muon transfer and elastic scattering are discussed, and results of some recent analyses are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Vesman, Pis'ma Zh. Èksper. Teoret. Fiz. 5 (1967) 113 (JETP Lett. 5 (1967) 91).

    Google Scholar 

  2. V.P. Dzhelepov et al., Zh. Èksper. Teoret. Fiz. 50 (1966) 1235 (Soviet Phys. JETP 23 (1966) 820).

    Google Scholar 

  3. V.M. Bystritsky et al., Phys. Lett. B 94 (1980) 476.

    Article  ADS  Google Scholar 

  4. S. Jones et al., Phys. Rev. Lett. 56 (1986) 588.

    Article  ADS  Google Scholar 

  5. W.H. Breunlich et al., Phys. Rev. Lett. 58 (1987) 329.

    Article  ADS  Google Scholar 

  6. L.I. Ponomarev, Contemporary Physics 31 (1990) 219; J.S. Cohen, in: Review of Fundamental Processes and Applications of Atoms and Ions, ed. C.D. Lin (World Scientific, Singapore, 1993); W.H. Breunlich et al., Ann. Rev. Nucl. Part. Sci. 39 (1989) 311.

    ADS  Google Scholar 

  7. M.P. Faifman and L.I. Ponomarev, Phys. Lett. B 265 (1991) 201; M.P. Faifman et al., Hyp. Interact. 101/102 (1996) 179.

    Article  ADS  Google Scholar 

  8. Yu.V. Petrov et al., Phys. Lett. B 331 (1994) 266.

    Article  ADS  Google Scholar 

  9. B.M. Forster et al., Hyp. Interact. 65 (1990) 1007.

    Article  Google Scholar 

  10. G.M. Marshall et al., Hyp. Interact. 101/102 (1996) 47.

    Article  Google Scholar 

  11. F. Mulhauser et al., this issue.

  12. M.C. Fujiwara et al., this issue.

  13. M.C. Fujiwara, Ph.D. thesis, University of British Columbia (in preparation).

  14. T.A. Porcelli, Ph.D. thesis, University of Victoria (in preparation).

  15. P.E. Knowles et al., Nucl. Instrum. Methods A 368 (1996) 604.

    Article  ADS  Google Scholar 

  16. M.C. Fujiwara et al., Nucl. Instrum. Methods A 395 (1997) 159.

    Article  ADS  Google Scholar 

  17. F. Mulhauser et al., Phys. Rev. A 53 (1996) 3069.

    Article  ADS  Google Scholar 

  18. V.E. Markushin et al., Hyp. Interact. 101/102 (1996) 155.

    Article  Google Scholar 

  19. T.M. Huber et al., this issue.

  20. J. Wozniak et al., Hyp. Interact. 101/102 (1996) 573.

    Article  Google Scholar 

  21. J. Wozniak et al., this issue.

  22. D.J. Abbot et al., Phys. Rev. A 55 (1997) 214.

    Article  ADS  Google Scholar 

  23. A. Badertscher et al., Phys. Lett. B 392 (1997) 28.

    Google Scholar 

  24. K.A. Aniol et al., Phys. Rev. A 28 (1983) 2684.

    Article  ADS  Google Scholar 

  25. L. Bracci et al., Muon Catal. Fusion 4 (1989) 247.

    Google Scholar 

  26. C. Chiccoli et al., Muon Catal. Fusion 7 (1992) 87.

    MathSciNet  Google Scholar 

  27. A. Adamczak et al., Muon Catal. Fusion 7 (1992) 309.

    Google Scholar 

  28. A. Adamczak, this issue.

  29. M. Jeitler et al., Phys. Rev. A 51 (1995) 2881.

    Article  ADS  Google Scholar 

  30. Yu.V. Petrov and V.Yu. Petrov, Phys. Lett. B 378 (1996) 1.

    Article  ADS  Google Scholar 

  31. GEANT 3.21, CERN Program Library Long Writeup W5013, CERN, Geneva (1993).

  32. M.C. Fujiwara et al., Hyp. Interact. 106 (1997) 257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, G., Porcelli, T., Adamczak, A. et al. Resonant formation measurements of \(dt\mu \) via time of flight. Hyperfine Interactions 118, 89–101 (1999). https://doi.org/10.1023/A:1012636619847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012636619847

Navigation