Skip to main content
Log in

Bohr–Weisskopf effect: influence of the distributed nuclear magnetization on hfs

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nuclear magnetic moments provide a sensitive test of nuclear wave functions, in particular those of neutrons, which are not readily obtainable from other nuclear data. These are taking added importance by recent proposals to study parity non-conservation (PNC) effects in alkali atoms in isotopic series. By taking ratios of the PNC effects in pairs of isotopes, uncertainties in the atomic wave functions are largely cancelled out at the cost of knowledge of the change in the neutron wave function. The Bohr–Weisskopf effect (B–W) in the hyperfine structure interaction of atoms measures the influence of the spatial distribution of the nuclear magnetization, and thereby provides an additional constraint on the determination of the neutron wave function. The added great importance of B–W in the determination of QED effects from the hfs in hydrogen-like ions of heavy elements, as measured recently at GSI, is noted. The B–W experiments require precision measurements of the hfs interactions and, independently, of the nuclear magnetic moments. A novel atomic beam magnetic resonance (ABMR) method, combining rf and laser excitation, has been developed for a systematic study and initially applied to stable isotopes. Difficulties in adapting the experiment to the ISOLDE radioactive ion beam, which have now been surmounted, are discussed. A first radioactive beam measurement for this study, the precision hfs of 126Cs, has been obtained recently. The result is 3629.515(∼0.001) MHz. The ability of ABMR to determine with high precision nuclear magnetic moments in free atoms is a desideratum for the extraction of QED effects from the hfs of the hydrogen-like ions. We also point out manifestations of B–W in condensed matter and atomic physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.W. Otten, in: Nuclei Far from Stability, ed. D.A. Bromley, Treatise on Heavy Ion Physics, Vol. 8 (Plenum, New York, 1988) p. 517;J. Billowes and P. Campbell, J. Phys. G 21 (1995) 707.

    Google Scholar 

  2. H.H. Stroke, V. Jaccarino, D.S. Edmonds, Jr. and R. Weiss, Phys. Rev. 105 (1957) 590.

    Article  ADS  Google Scholar 

  3. P.A. Moskowitz, C.H. Liu, G. Fulop and H.H. Stroke, Phys. Rev. C 4 (1971) 620;C. Ekström, L. Robertsson, S. Ingelman, G. Wannberg and I. Ragnarsson, Nucl. Phys. A 348 (1980) 25;T. Asaga, T. Fujita and K. Ito, Z. Phys. A 359 (1997) 237.

    Article  ADS  Google Scholar 

  4. N.J. Stone, J. Phys. (Paris) Colloque C4, Suppl. to Nos. 11/12, 34 (1973) 69.

    Google Scholar 

  5. A. Bohr and V.F. Weisskopf, Phys. Rev. 77 (1950) 94.

    Article  MATH  ADS  Google Scholar 

  6. S. Büttgenbach, Hyp. Interact. 20 (1984) 1.

    Article  ADS  Google Scholar 

  7. M.G.H. Gustavsson and A.-M. Mårtensson-Pendrill, Adv. Quantum Chem. 30 (1998) 343.

    Article  Google Scholar 

  8. M. Tomaselli, T. Kühl, P. Seelig, C. Holbrow and E. Kankeleit, Phys. Rev. C 58 (1998) 1524.

    Article  ADS  Google Scholar 

  9. T. Fujita and A. Arima, Nucl. Phys. A 254 (1975) 513.

    Article  ADS  Google Scholar 

  10. R. Link, H. Backe, R. Engfer, E. Kankeleit and H.K. Walter, Hyp. Interact. 3 (1977) 381.

    Article  ADS  Google Scholar 

  11. S.C. Chang et al., Phys. Lett. B 34 (1971) 615;R. Link et al., Phys. Lett. B 42 (1972) 57.

    Article  ADS  Google Scholar 

  12. I. Klaft, S. Borneis, T. Engel, B. Fricke, R. Grieser, G. Huber, T. Kühl, D. Marx, R. Neumann, S. Schröder, P. Seelig and L. Völker, Phys. Rev. Lett. 73 (1994) 2425.

    Article  ADS  Google Scholar 

  13. V.M. Shabaev, J. Phys. B 27 (1994) 5825.

    Article  ADS  Google Scholar 

  14. T. Kühl, A. Dax, M. Gerlach, D. Marx, H. Winter, M. Tomaselli, T. Engel, M. Würtz, V.M. Shabaev, P. Seelig, R. Greiser, G. Huber, P. Merz, B. Fricke and C. Holbrow, Nucl. Phys. A 626 (1997) 235c.

    Article  ADS  Google Scholar 

  15. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Academic Press, New York, 1957) section 22.

    MATH  Google Scholar 

  16. H. Persson, S.M. Schneider, W. Greiner, G. Soff and I. Lindgren, Phys. Rev. Lett. 76 (1996) 1433.

    Article  ADS  Google Scholar 

  17. S.M. Schneider, W. Greiner and G. Soff, Phys. Rev. A 50 (1994) 118;A. Verganelakis and D. Zwanziger, Nuovo Cimento, Ser. X 39 (1965) 613, and extensive references therein.

    Article  ADS  Google Scholar 

  18. H. Grotch and D.R. Yennie, Rev. Modern. Phys. 41 (1969) 350.

    Article  ADS  Google Scholar 

  19. M. Tomaselli, Phys. Rev. C 37 (1988) 349.

    Article  ADS  Google Scholar 

  20. M. Tomaselli, S.M. Schneider, E. Kankeleit and T. Kühl, Phys. Rev. C 51 (1995) 2989.

    Article  ADS  Google Scholar 

  21. V.M. Shabaev, M. Tomaselli, T. Kühl, A.N. Artemyev and V.S. Yerokhin, Phys. Rev. A 56 (1997) 252.

    Article  ADS  Google Scholar 

  22. R. Bauer, J. Speth, V. Klemt, P. Ring, E. Werner and T. Yamazaki, Nucl. Phys. A 209 (1973) 535.

    Article  ADS  Google Scholar 

  23. V.M. Shabaev, M.B. Shabaeva, I.I. Tupitsyn, V.A. Yerokhin, A.N. Artemyev, T. Kühl, M. Tomaselli and O.M. Zherebtsov, Phys. Rev. A 57 (1998) 149.

    Article  ADS  Google Scholar 

  24. L. Armstrong, Jr., Theory of the Hyperfine Structure of Free Atoms (Wiley, New York, 1971) chapters V, VII-IX.

    Google Scholar 

  25. K.L.G. Heyde, The Nuclear Shell Model (Springer, Berlin, 1990) p. 154.

    Google Scholar 

  26. P.A. Moskowitz and M. Lombardi, Phys. Lett. B 46 (1973) 334.

    Article  ADS  Google Scholar 

  27. H.H. Stroke, R.J. Blin-Stoyle and V. Jaccarino, Phys. Rev. 123 (1961) 1326.

    Article  ADS  Google Scholar 

  28. A. Arima and H. Horie, Progr. Theor. Phys. (Kyoto) 12 (1954) 623;H. Noya, A. Arima and H. Horie, Progr. Theor. Phys. (Kyoto) 8 (1958) 33, Supplement.

    Article  ADS  Google Scholar 

  29. G. Sprouse, private communication to H.H.S. (March 1999);J.S. Grossman, L.A. Orozco, M.R. Pearson, J.E. Simsarian, G.D. Sprouse and W.Z. Zhao, Phys. Rev. Lett. 83 (1999) 935;J.R. Persson, Eur. Phys. J. A 2 (1998) 3.

  30. E.N. Fortson, Y. Pang and L. Wilets, Phys. Rev. Lett. 65 (1990) 2857;A.-M. Mårtensson-Pendrill, Phys. Rev. Lett. 74 (1995) 2184;C.S. Wood et al., Science 275 (1997) 1759.

    Article  ADS  Google Scholar 

  31. M.N. Rosenbluth, Phys. Rev. 79 (1950) 615.

    Article  MATH  ADS  Google Scholar 

  32. T.W. Donnelly and J.D. Walecka, Nucl. Phys. A 201 (1973) 81.

    Article  ADS  Google Scholar 

  33. J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952) p. 803.

    MATH  Google Scholar 

  34. I. Sick et al., Phys. Rev. Lett. 38 (1977) 1259;S. Platchkov, Thèse, Universitéde Paris VII (1981).

    Article  ADS  Google Scholar 

  35. B. Frois, Nucl. Phys. A 434 (1985) 57;I. Sick, in: Internat. Symposium on Nuclear Shell Models, eds. M. Vallieres and B.H. Wildenthal (World Scientific, Singapore, 1985) p. 410;B. Frois, in: Proc. of Niels Bohr Centennial Conf.-Nuclear Structure 1985, eds. R. Broglia, G.B. Hageman and B. Herskind (North-Holland, Amsterdam, 1985) p. 25.

    Article  ADS  Google Scholar 

  36. I. Sick, Nucl. Phys. A 354 (1981) 37c.

    Article  ADS  Google Scholar 

  37. V. Jaccarino, J.G. King, R.A. Satten and H.H. Stroke, Phys. Rev. 94 (1954) 1798.

    Article  ADS  Google Scholar 

  38. M. LeBellac, Nucl. Phys. 40 (1963) 645.

    Article  Google Scholar 

  39. H.J. Rosenberg and H.H. Stroke, Phys. Rev. A 5 (1972) 1992.

    Article  ADS  Google Scholar 

  40. N.F. Ramsey, Molecular Beams (Clarendon, Oxford, 1956).

    Google Scholar 

  41. H.T. Duong, C. Ekström, M. Gustafsson, T.T. Inamura, P. Juncar, P. Lievens, I. Lindgren, S. Matsuki, T. Murayama, R. Neugart, T. Nilsson, T. Nomura, M. Pellarin, S. Penselin, J. Persson, J. Pinard, I. Ragnarsson, O. Redi, H.H. Stroke, J.L. Vialle and the ISOLDE Collaboration, Nucl. Instrum. Methods A 325 (1993) 465.

    Article  ADS  Google Scholar 

  42. C. Thibault, F. Touchard, S. Büttgenbach, R. Klapisch, M. de Saint Simon, H.T. Duong, P. Jacquinot, P. Juncar, S. Liberman, P. Pillet, J. Pinard, J.L. Vialle, A. Pesnelle and G. Huber, Phys. Rev. C 23 (1981) 2720.

    Article  ADS  Google Scholar 

  43. T. Dinneen, A. Ghiorso and H. Gould, Rev. Sci. Instrum. 67 (1996) 752.

    Article  ADS  Google Scholar 

  44. Copy the ISOLDE Collaboration, Nucl. Phys. A 367 (1981) 1.

    Article  Google Scholar 

  45. C. Ekström, G. Ingelman, G. Wannberg and M. Skarestad, Nucl. Phys. A 292 (1977) 144.

    Article  ADS  Google Scholar 

  46. M.G.H. Gustavsson and A.-M. Mårtensson-Pendrill, Phys. Rev. A 58 (1998) 3611.

    Article  ADS  Google Scholar 

  47. S. Penselin in: Progress in Atomic Spectroscopy, Part A, eds. W. Hanle and H. Kleinpoppen (Plenum, New York, 1978) p. 463.

    Google Scholar 

  48. I. Ragnarsson, private communication.

  49. G.J. Perlow, in: Hyperfine Interactions in Excited Nuclei, eds. G. Goldring and R. Kalish (Gordon and Breach, New York, 1971) p. 651 and references therein;N.J. Stone, in: Low Temperature Nuclear Orientation, eds. N.J. Stone and H. Postma (North-Holland, Amsterdam, 1986) p. 360.

    Google Scholar 

  50. C.P. Slichter, Principles of Magnetic Resonance (Harper &Row, New York, 1963) 89;N.J. Stone, in: Low Temperature Nuclear Orientation, op. cit., p. 673 and references therein.s

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroke, H., Duong, H. & Pinard, J. Bohr–Weisskopf effect: influence of the distributed nuclear magnetization on hfs. Hyperfine Interactions 129, 319–335 (2000). https://doi.org/10.1023/A:1012630404421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012630404421

Navigation