Skip to main content
Log in

Optimized nitrate reductase assay predicts the rate of nitrate utilization in the halotolerant microalga Dunaliella viridis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

An in situ method for measuring nitrate reductase (NR) activity in Dunaliella viridis was optimized in terms of incubation time, concentration of KNO3, permeabilisers (1-propanol and toluene), pH, salinity, and reducing power (glucose and NADH). NR activity was measured by following nitrite production and was best assayed with 50 mM KNO3, 1.2 mM NADH, 5% 1-propanol (v/v), at pH 8.5. The estimated half-saturation constant (Ks) for KNO3 was 5 mM. Glucose had no effect as external reducing power source, and NADH concentrations >1.2 mM inhibited NR activity. Nitrite production was linear up to 20 min; longer incubation did not lead to higher nitrate reduction. The use of the optimized assay predicted the rate of NO 3 removal from the external medium by D. viridis with high degree of precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aryan AP, Batt RG, Wallace W (1983) Reversible inactivation of nitrate reductase by NADH and the occurrence of partially inactive enzyme in the Wheat Leaf. Plant Physiol. 71: 582–587.

    PubMed  CAS  Google Scholar 

  • Berges JA, Harrison PJ (1995a) Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: A revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnol. Oceanogr. 40: 82–93.

    Article  CAS  Google Scholar 

  • Berges JA, Harrison PJ (1995b) Relationships between nitrate reductase activity and nitrate incorporation under steady-state light or nitrate limitation in the marine diatom Thalassiosira pseudonana (Bacillarophyceae). J. Phycol. 31: 85–95.

    Article  CAS  Google Scholar 

  • Blasco D, MacIsaac JJ, Packard TT, Dugdale RC (1984) Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region. Limnol. Oceanogr. 29: 275–286.

    Article  CAS  Google Scholar 

  • Blasco D, Packard TT (1974) Nitrate reductase measurements in upwelling regions: 1. Significance of the distribution off Baja California. Tethys 6: 239–246.

    CAS  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In Borowitzka MA & Borowitzka LJ (eds), Microalgal Biotechnology. Cambridge University Press, 27–58.

  • Brinkhuis H, Renzhi L, Chaoyuan W, Xun-Sen J (1989) Nitrite uptake transients and consequences for in vivo algal nitrate reductase assays. J. Phycol. 25: 539–545.

    CAS  Google Scholar 

  • Canvin DT, Woo KC (1979) The regulation of nitrate reduction in spinach leaves. Can. J. Bot. 57: 1155–1160.

    CAS  Google Scholar 

  • Corzo A, Niell FX (1991) Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. J. exp. mar. Biol. Ecol. 146: 181–191.

    Article  CAS  Google Scholar 

  • Corzo A, Plasa R, Ullrich WR (1991) Extracellular ferricyanide reduction and nitrate reductase activity in the green alga Monoraphidium braunii. Plant Sci. 75: 221–228.

    Article  CAS  Google Scholar 

  • Davison IR, Stewart WDP (1984) Studies on nitrate reductase activity in Laminaria digitata (Huds.) Lamour. II. The role of nitrate availability in the regulation of the enzyme activity. J. exp. mar. Biol. Ecol. 79: 65–78.

    Article  CAS  Google Scholar 

  • Eppley RW, Coatsworth JL, Solorzano L (1969) Studies of nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14: 194–205.

    CAS  Google Scholar 

  • Eppley RW, Packard TT, McIsaac JJ (1970) Nitrate reductase in Peru current phytoplankton. Mar. Biol. 6: 135–139.

    Article  Google Scholar 

  • Hernandez I, Corzo A, Gordillo FJL, Robles MD, Saez E, Fernandez JA, Niell FX (1993) Seasonal cycle of the gametophytic form of Porphyra umbilicalis: nitrogen and carbon. Mar. Ecol. Prog. Ser. 99: 301–311.

    Google Scholar 

  • Hochman A, Nissany A, Wynne D, Kaplan B, Berman T (1986) Nitrate reductase: an improved assay method for phytoplankton. J. Plankton Res. 8: 385–392.

    CAS  Google Scholar 

  • Hurd CL, Berges JA, Osborne J, Harrison PJ (1995) An in vitro nitrate reductase assay for marine macroalgae: optimization and characterization of the enzyme for Fucus gardneri (Phaeophyta). J. Phycol. 31: 835–843.

    Article  CAS  Google Scholar 

  • Javor B (1989) Hypersaline Environments. Brock/Springer Series in Contemporary Biosciences, 328 pp.

  • Jiménez C, Niell FX (1991) Growth of Dunaliella viridis Teodoresco: effect of salinity, temperature and nitrogen concentration. J. appl. Phycol. 3: 319–327.

    Google Scholar 

  • Johnson MK, Johnson RD, Macelroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophilic alga Dunaliella viridis. J. Bact. 95: 1461–1468.

    PubMed  CAS  Google Scholar 

  • Katz A, Avron M (1985) Determination of intracellular osmotic volume and sodium concnetration in Dunaliella. Plant Physiol. 78: 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JM, Herrick HE (1982) Media for in vivo nitrate reductase assay of plant tissue. Plant Sci. Lett. 24: 273–275.

    Google Scholar 

  • Lorimer GH, Gewitz HS, Völker W, Solomonson LP, Vennesland B (1974) The presence of bound cyanide in the naturally inactivated form of nitrate reductase of Chlorella vulgaris. J. biol. Chem. 249: 6074–6079.

    PubMed  CAS  Google Scholar 

  • Mann AF, Hucklesby DP, Hewitt EJ (1979) Effect of aerobic and anaerobic conditions on the in vivo nitrate reductase assay in spinach leaves. Planta 146: 83–89.

    Article  CAS  Google Scholar 

  • Mauriño SG, Echevarria C, Mejias JA, Vargas MA, Maldonado JM (1986) Properties of the in vivo nitrate reductase activity assay in maize, soybean and spinach leaves. J. Plant Physiol. 24: 123–130.

    Google Scholar 

  • Mauriño SG, Echevarria C, Vargas MA, Maldonado JM (1985) Freezing and thawing on in situ nitrate reductase activity in spinach leaves. J. Plant Physiol. 120: 409–417.

    Google Scholar 

  • Moreno CG, Aparicio PJ, Palacián E, Losada M (1972) Interconversion of the active and inactive forms of Chlorella nitrate reductase. FEBS Lett. 26: 11–14.

    Article  PubMed  CAS  Google Scholar 

  • Packard TT, Dugdale RC, Goering JJ, Barber JJ (1978) Nitrate reductase activity in the subsurface waters of the Peru current. J. Mar. Res. 36: 59–76.

    CAS  Google Scholar 

  • Pistorius EK, Gewitz HS, Voss H, Vennesland B (1976) Reversible inactivation of nitrate reductase in Chlorella vulgaris in vivo. Planta 128: 73–80.

    Article  CAS  Google Scholar 

  • Rhodes D, Stewart GR (1974) A procedure for the in vivo determination of enzyme activity in higher plant tissue. Planta 118: 133–144.

    Article  CAS  Google Scholar 

  • Scheidler L, Ninneman H (1986) Nitrate reductase activity: phenazine methosulfate-ferricyanide stop reagent replaces postassay treatment. Analyt. Biochem. 154: 29–33.

    Article  Google Scholar 

  • Scholl RL, Harper JE, Hageman RH (1974) Improvements of the nitrite color development in assays of nitrate reductase by phenazinemethosulfate and zinc acetate. Plant Physiol. 124: 123–130.

    Google Scholar 

  • Shinn JA (1941) Ind. Eng. Chem. (annual edition), 13: 33. In Strickland JDH & Parsons TR (eds) A practical Approach Handbook of Seawater Analysis. Fish. Res. Bd Can. Bull. 167.

  • Snell FD, Snell CT (1949) Colorimetric Methods of Analysis. 3rd Edition, Van Nostrand, Princeton, New Jersey. Vol. 2, 804 pp.

  • Sym GJ (1984) Optimisation of the in vivo assay conditions for nitrate reductase in barley (Hordeum vulgare L. cv. Igri). J. Sci. Food Agric. 35: 725–730.

    CAS  Google Scholar 

  • Syrett PJ, (1981) Nitrogen metabolism of microalgae. In Platt T (ed.) Physiological Bases of Phytoplankton Ecology. Bull. No. 210182-210. Canadian Government Publishing Center.

  • Wood ED, Armstrong FAJ, Richards F (1967) Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J. mar. biol. ASS. UK. 47: 23–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javier, F., Gordillo, L., Jiménez, C. et al. Optimized nitrate reductase assay predicts the rate of nitrate utilization in the halotolerant microalga Dunaliella viridis. Journal of Applied Phycology 9, 99–106 (1997). https://doi.org/10.1023/A:1007978512458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007978512458

Navigation