Skip to main content
Log in

Objective models for steroid binding sites of human globulins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We report the application of a recently developed alignment-free 3D QSAR method [Crippen,G.M., J. Comput. Chem., 16 (1995) 486] to a benchmark-type problem. The test systeminvolves the binding of 31 steroid compounds to two kinds of human carrier protein. Themethod used not only allows for arbitrary binding modes, but also avoids the problems oftraditional least-squares techniques with regard to the implicit neglect of informative outlyingdata points. It is seen that models of considerable predictive power can be obtained even witha very vague binding site description. Underlining a systematic, but usually ignored, problemof the QSAR approach, there is not one unique type of model but, rather, an entire manifoldof distinctly different models that are all compatible with the experimental information. Fora given model, there is also a considerable variation in the found binding modes, illustratingthe problems that are inherent in the need for ’correct‘ molecular alignment in conventional3D QSAR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stouch, T.R. and Jurs, P.C., J. Med. Chem., 29 (1986) 2125.

    Google Scholar 

  2. Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993.

    Google Scholar 

  3. Cramer, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  4. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  5. Loughney, D.A. and Schwender, C.F., J. Comput.-Aided Mol. Design, 6 (1992) 569.

    Google Scholar 

  6. Good, A.C., So, S.-S. and Richards, W.G., J. Med. Chem., 36 (1993) 433.

    Google Scholar 

  7. Jain, A.N., Koile, K. and Chapman, D., J. Med. Chem., 37 (1994) 2315.

    Google Scholar 

  8. Norinder, U., J. Comput.-Aided Mol. Design, 4 (1990) 381.

    Google Scholar 

  9. Norinder, U., J. Comput.-Aided Mol. Design, 5 (1991) 419.

    Google Scholar 

  10. Carlstedt-Duke, J., Nilsson, L. and Norinder, U., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 373–385.

    Google Scholar 

  11. Crippen, G.M., J. Comput. Chem., 8 (1987) 943.

    Google Scholar 

  12. Bradley, M.P. and Crippen, G.M., J. Med. Chem., 36 (1993) 3171.

    Google Scholar 

  13. Srivastava, S. and Crippen, G.M., J. Med. Chem., 36 (1993) 3572.

    Google Scholar 

  14. Crippen, G.M., J. Comput. Chem., 16 (1995) 486.

    Google Scholar 

  15. Jain, A.N., Dietterich, T.G., Lathrop, R.H., Chapman, D., Critchlow Jr., R.E., Bauer, B.E., Webster, T.A. and Lozano-Perez, T., J. Comput.-Aided Mol. Design, 8 (1994) 635.

    Google Scholar 

  16. Hahn, M. and Rogers, D., J. Med. Chem., 38 (1995) 2091.

    Google Scholar 

  17. Jain, A.N., Harris, N.L. and Park, J.Y., J. Med. Chem., 38 (1995) 1295.

    Google Scholar 

  18. Mickelson, K.E., Forsthoefel, J. and Westphal, U., Biochemistry, 20 (1981) 6211.

    Google Scholar 

  19. Dunn, J.F., Nisula, B.C. and Rodbard, D., J. Clin. Endocrin. Metab., 53 (1981) 58.

    Google Scholar 

  20. Cerius2, Molecular Simulations Inc., Burlington, MA, U.S.A., 1994.

  21. Allinger, N.L., J. Am. Chem. Soc., 99 (1977) 8127.

    Google Scholar 

  22. MM2(91), Allinger, N.L., University of Georgia, Athens, GA, U.S.A., 1991.

    Google Scholar 

  23. Lipkowitz, K.B., QCPE Bull., 12 (1992) 6.

    Google Scholar 

  24. DGEOM, Blaney, J.M., Crippen, G.M., Dearing, A. and Dixon, J.S., Copyright DuPont Corporation, 1990; QCPE Program 590, Indiana University, Bloomington, IN, U.S.A.

    Google Scholar 

  25. ‘Padre’, Stahl, M. and Walters, P., University of Arizona, Tucson, AZ, U.S.A., 1995.

    Google Scholar 

  26. Smellie, A., Kahn, S.D. and Teig, S.L., J. Chem. Inf. Comput. Sci., 35 (1995) 285.

    Google Scholar 

  27. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  28. Galaxy, Copyright Ghose, A.K., 1995; AM Technologies, San Antonio, TX, U.S.A.

  29. Wold, S., Technometrics, 20 (1978) 397.

    Google Scholar 

  30. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes in C, 2nd ed., Cambridge University Press, Cambridge, U.K., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitker, J., Gopalaswamy, R. & Crippen, G.M. Objective models for steroid binding sites of human globulins. J Comput Aided Mol Des 11, 93–110 (1997). https://doi.org/10.1023/A:1008031629127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008031629127

Navigation