Skip to main content
Log in

QSAR and conformational analysis of the antiinflammatory agent amfenac and analogues

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The new nonsteroidal antiinflammatory drug (NSAID) arylacetic amfenac (2-amino-3-benzoylphenylacetic acid) and 19 substituted derivatives were studied in order to correlate the biological activities with the structure-related parameters.

The geometry of amfenac in neutral and anionic form was totally optimized, starting from standard geometries and crystallographic data, using semiempirical AM1 and MNDO quantum-mechanical methods. Conformational analysis shows the existence of a rigid structure for rotations of the acetic acid chain (α°) and the central carbonyl group (γ°) around the bonds with the phenylamine ring, whereas the carboxyl group (β°) and the phenyl ring of the benzoyl group (δ°) can rotate almost freely.

Electrostatic potential maps were analyzed and showed that the electrostatic orientation effect seems to make an important contribution to the binding of the active compounds to prostaglandin synthase. An electrostatic orientation model of the binding site is proposed. The frontier orbital charge distribution was also described for each compound. On the other hand, steric, electronic and hydrophobic (log P) parameters were calculated and QSAR analysis showed that the most significant parameter for the antiinflammatory activity was the π-electron density of the HOMO orbital in the second aromatic ring. These results suggest a possible electronic charge transfer between the aromatic fragments and the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Welstead Jr., W.J., Moran, H.W., Stanffer, H.F., Turnbull, L.F. and Sancilio, L.F., J. Med. Chem., 22 (1979) 1074.

    Google Scholar 

  2. Walsh, D.A., Shamblee, D.A., Uwaydah, I.M., Welstead Jr., W.J., Sancilio, L.F. and Dannenburg, W.N., J. Med. Chem., 27 (1984) 1379.

    Google Scholar 

  3. Sancilio, L.F., Reese, D.L., Cheunz, S. and Alphin, R.S., Agents Actions, 7 (1977) 133.

    Google Scholar 

  4. Okazaki, T., Kosaka, S., Mitomo, N., Kasukawa, R. and Nishimagi, T., Clin. Rep., 16 (1982) 6514.

    Google Scholar 

  5. Kawano, K. and Kimura, G., Clin. Rep., 16 (1982) 6683.

    Google Scholar 

  6. Hiranuma, T., Kato, S. and Hachisu, M., J. Pharmacobiodyn., 11 (1988) 612.

    Google Scholar 

  7. Walsh, D.A., Moran, H.W., Shamblee, D.A., Welstead Jr., W.J., Nolan, J., Sancilio, L.F. and Graff, G., J. Med. Chem., 33 (1990) 2296.

    Google Scholar 

  8. Vane, J.R. and Botting, R., FASEB J., 1 (1987) 89.

    Google Scholar 

  9. Gund, P. and Shen, T.Y., J. Med. Chem., 20 (1977) 1146.

    Google Scholar 

  10. Salvetti, F., Buttinoni, A., Ceserani, R. and Tosi, C., Eur. J. Med. Chem., 16 (1981) 81.

    Google Scholar 

  11. Appleton, R.A. and Brown, K., Prostaglandins, 18 (1979) 29.

    Google Scholar 

  12. Nicholson, R.M., Murphy, J.R. and Dearden, J.C., J. Pharm. Pharmacol., 34 (1982) 106P.

  13. Mehler, E.L. and Gerhards, J., Int. Quantum Chem., 35 (1989) 205.

    Google Scholar 

  14. Kulmacz, K.J., J. Biol. Chem., 264 (1989) 14136.

    Google Scholar 

  15. Miyamoto, T., Ogino, N., Yamamoto, S. and Hayaishi, O., J. Biol. Chem., 251 (1976) 2629.

    Google Scholar 

  16. Van der Ouderaa, F.J., Buytenhek, M., Nugteren, D.H. and Van Dorp, D.A., Biochim. Biophys. Acta, 487 (1977) 315.

    Google Scholar 

  17. Yokoyama, C., Toh, H., Miyata, A. and Tanabe, T., Adv. Prostaglandins, Thromboxane, Leukotriene Res., 21 (1990) 61.

    Google Scholar 

  18. Toh, H., FEBS Lett., 258 (1989) 317.

    Google Scholar 

  19. Smith, W.L., DeWitt, D.L., Kraemer, S.A., Andrews, M.J., Hla, T., Maciag, T. and Shimokawa, T., Adv. Prostaglandin Thromboxane Leukotriene Res., 20 (1990) 14.

    Google Scholar 

  20. Smith, W.L. and Marnett, L.J., Biochim. Biophys. Acta, 1083 (1991) 1.

    Google Scholar 

  21. Smith, W.L., Marnett, L.J. and DeWitt, D.L. In Taylor, C.W. (Ed.), Pharmacology and Therapeutics, Pergamon Press, New York, 1991, 153–179.

    Google Scholar 

  22. Bekemeier, H., Böhm, R., Hagen, V., Hanning, E., Henkel, H.J., Hirschelmann, R. and Wenzel, U., Agents Actions, Suppl. (1982) 17.

  23. Kuchar, M., Resholec, V. and Nemecek, O., Drugs Future, 7 (1982) 179.

    Google Scholar 

  24. Dearden, J.C., Gregg, C.N. and Nicholson, R.M., In Fauchère, J.L. (Ed.) QSAR: Quantitative Structure-Activity Relationships in Drug Design, Alan R. Liss, New York, 1989, pp. 353–356.

    Google Scholar 

  25. Ruiz, J., López, M., Milà Lozoya, E. and Pouplana, R., In Silipo, C. and Vittoria, A. (Eds.) QSAR: Rational Approaches to the Design of Bioactive Compounds, Elsevier Science Publishers, Amsterdam, 1991, pp. 477–480.

    Google Scholar 

  26. Moser, P., Sallmann, A. and Wiesenberg, I., J. Med. Chem., 33 (1990) 2358.

    Google Scholar 

  27. Muchowski, J.M., Unger, S.H., Ackrell, J., Cheung, P., Cooper, G.F., Cook, J., Gallegra, P., Halpern, O., et al., J. Med. Chem., 28 (1985) 1037.

    Google Scholar 

  28. López, M., Ruiz, J., Milà, J., Lozoya, E. and Pouplana, R., In Silipo, C. and Vittoria, A. (Eds.) QSAR: Rational Approaches to the Design of Bioactive Compounds. Elsevier Science Publishers, Amsterdam, 1991, pp. 315–318.

    Google Scholar 

  29. Kennard, C.H., Smith, G. and White, A.H., Acta Crystallogr., B37 (1981) 1317.

    Google Scholar 

  30. Bats, J.W. and Cannenbley, R., Acta Crystallogr., C40 (1984) 995.

    Google Scholar 

  31. Allen, F.H., Kennard, O. and Taylor, R., Acc. Chem. Res., 16 (1983) 146.

    Google Scholar 

  32. Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc., 99 (1977) 4899.

    Google Scholar 

  33. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  34. Olivella, S., Q.C.P.E. Bull., 9 (1984) 109. Modified by Olivella, S. and Bofill, J.M. in 1987.

    Google Scholar 

  35. Stewart, J.J.P., Q.C.P.E. Bull., 3 (1983) 101.

    Google Scholar 

  36. BIOSYM Technologies, Inc., 10065 Barnes Canyon Road, San Diego, CA 92121.

  37. Orozco, M. and Luque, F.J., J. Comput.-Aided Mol. Design, 4 (1990) 411.

    Google Scholar 

  38. Luque, F.J. and Orozco, M., Chem. Phys. Lett., 168 (1990) 269.

    Google Scholar 

  39. Luque, F.J., Orozco, M. and Illas, F., unpublished results.

  40. DIMA computer program was made by the Pisa group and was provided by Dr. M. Cimiraglia at the Università di Pisa.

  41. Roberson, W., ApSimon, J.W. and Herman, L., Q.C.P.E. Bull., 7 (1987) 88.

    Google Scholar 

  42. Statgraphics, Statistical Graphic Systems, STSS Inc., 2115 East Jefferson Street, Rockville, MD 20852, 1986.

  43. Boyd, D.B. and Smith, D.W., J. Comput. Chem., 9 (1988) 387.

    Google Scholar 

  44. Dive, G., Lapière, C.L. and Leroy, G., Bull. Soc. Chim. Belg., 86 (1977) 73.

    Google Scholar 

  45. Smeyers, Y.G., Cuellar, S., Galvez, E. and Arias, M.S., J. Pharm. Sci., 74 (1985) 47.

    Google Scholar 

  46. Smeyers, Y.G., Hernandez, A., Muñoz, C., Aguilera, J., Galvez, E. and Arias, M.S., J. Pharm. Sci., 78 (1989) 764.

    Google Scholar 

  47. Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, J., López, M., Milà, J. et al. QSAR and conformational analysis of the antiinflammatory agent amfenac and analogues. J Computer-Aided Mol Des 7, 183–198 (1993). https://doi.org/10.1007/BF00126444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126444

Key words

Navigation