Skip to main content
Log in

A molecular mechanics study of the selectivity of crown ethers for metal ions on the basis of their size

  • Review Article
  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

A molecular mechanics (MM) analysis is carried out on complexes of crown ethers CH2(OCH2CH2)nCH2O, 12-crown-4 (n=3), 15-crown-5 (n=4), 18-crown-6 (n=5), 24-crown-8 (n=7), and 30-crown-11 (n=9) to determine the nature of the selectivity shown by these ligands for metal ions on the basis of metal ion size. The MM program used is SYBYL, and M-O bonds are represented using a ‘covalent’ model, i.e. the M-O bonds are modelled with ideal M-O bond lengths and force constants. The previously used technique of calculating strain energy as a function of M-O bond length is used for all the complexes, and also the complexes of the non-macrocyclic polyethylene glycol analogues. It is concluded that the crown ethers fall into three groups with regard to selectivity for metal ions. Group one consists of the smaller macrocycles such as 12-crown-4 and 15-crown-5, where metal ions generally are too large to enter the cavity of the macrocycle, and the metal ion is coordinated lying outside the plane of the donor atoms of the ligand. Here factors that control selectivity are the same as in non-macrocyclic ligands, chiefly the size of the chelate ring. Group 2 contains only 18-crown-6 of the ligands studied here. 18-Crown-6 complexes have three important conformers, one of which, theD 3d , shows sharp size match selectivity, preferring metal ions with M-O bond lengths of about 2.9 Å. The other two conformers are adopted by metal ions too small for theD 3d conformer, and are more flexible, exerting little size-match selectivity. These other two conformers are of higher energy than theD 3d conformer for metal ions with M-O bond lengths greater than 2.55 Å. Thus, a genuine ‘size match selectivity’ is found for K+ with 18-crown-6. With an ideal M-O bond length of 2.88 Å, K+ fits the cavity of theD 3d conformer of 18-crown-6 very closely. The third group consists of very large macrocycles such as 24-crown-8 and 30-crown-10. These enfold the metal ion in extremely folded conformations, but may, as does 30-crown-10, exert considerable selectivity for metal ions on the basis of their size by virtue of the conformation resulting in a set of torsional angles in the ring atoms of the macrocycle which confer considerable rigidity on the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Pedersen:J. Am. Chem. Soc. 89, 2459 (1967).

    Google Scholar 

  2. R.M. Izatt, K. Pawlak, J.S. Bradshaw, and R.L. Bruening:Chem. Rev. 91, 1721.

  3. R.D. Hancock:J. Chem. Educ. 69, 615 (1992).

    Google Scholar 

  4. G.W. Gokel:Crown Ethers and Cryptands, The Royal Society of Chemistry, 1991.

  5. V.J. Thom, C.C. Fox, J.C.A. Boeyens, and R.D. Hancock:J. Am. Chem. Soc. 106, 5947 (1984).

    Google Scholar 

  6. R.D. Hancock:Acc. Chem. Res. 23, 253 (1990).

    Google Scholar 

  7. R.D. Hancock:Progr. Chem. 37, 187 (1989).

    Google Scholar 

  8. R.D. Hancock: inPerspectives in Coordination Chemistry, A.F. Williams, C. Floriani, and A.E. Merbach, Eds., Verlag Helvetica Chimica Acta, Basel, 1992, pp. 129–151.

    Google Scholar 

  9. R.A. Bartsch, B.P. Csech, S.I. Kang, L.E. Stewart, W. Wolkowitz, W.A. Charewicz, G.S. Heo, and B. Son:J. Am. Chem. Soc. 104, 3249 (1982).

    Google Scholar 

  10. G. Wipff, P. Weiner, and P.A. Kollman:J. Am. Chem. Soc. 104, 3249 (1982).

    Google Scholar 

  11. P.D.J. Grootenhuis, and P.A. Kollman:J. Am. Chem. Soc. 111, 2152 (1989).

    Google Scholar 

  12. K.V. Damu, R.D. Hancock, P.W. Wade, J.C.A. Boeyens, D.G. Billing, and S.M. Dobson:J. Chem. Soc., Dalton Trans. 293 (1991).

  13. SYBYL program, available from TRIPOS associates, 1699 South Hanley Road, St Louis, MO 63144, U.S.A.

  14. M. Clark, R.D. Cramer, and N. van Opdenbosch:J. Comput. Chem. 10, 982 (1989).

    Google Scholar 

  15. P.V. Bernhardt and P. Comba:Helv. Chim. Acta 74, 1834 (1991).

    Google Scholar 

  16. A.M. Bond, T.W. Hambley, and M.R. Snow:Inorg. Chem. 24, 1920 (1985).

    Google Scholar 

  17. M. Dobler and R.P. Phizackerley:Acta Crystallogr., Sect B B30, 2746 (1974).

    Google Scholar 

  18. M. Dobler and R.P. Phizackerley:Acta Crystallogr., Sect B B30, 2748 (1974).

    Google Scholar 

  19. R.D. Shannon:Acta Crystallogr., Sect A A32, 751 (1976).

    Google Scholar 

  20. R.D. Rogers, A.H. Bond, and S. Aguinaga:J. Am. Chem. Soc. 114, 2960 (1992).

    Google Scholar 

  21. M.A. Bush and M.R. Truter:J. Chem. Soc., Perkin Trans. 2, 341 (1972).

    Google Scholar 

  22. P. Seiler, M. Dobler, and J.D. Dunitz:Acta Crystallogr., Sect B B30, 2744 (1974).

    Google Scholar 

  23. M. Dobler and J.D. Dunitz, and P. Seiler:Acta Crystallogr., Sect B B30, 2741 (1974).

    Google Scholar 

  24. N.W. Alcock, M. Ravindran, and G.R. Willey:J. Chem. Soc., Chem. Commun. 1063 (1989).

  25. D.L. Hughes and J.N. Wingfield:J. Chem. Soc., Chem. Commun. 804 (1977).

  26. D.L. Hughes, C.L. Mortimer, and M.R. Truter:Acta Crystallogr., Sect B B34, 800 (1978).

    Google Scholar 

  27. M.A. Bush and M.R. Truter:J. Chem. Soc., Perkin Trans. 2, 345 (1972).

    Google Scholar 

  28. R.D. Gandour, F.R. Fronczek, V.J. Gatto, C. Minganti, R.A. Schultz, B.D. White, K.A. Arnold, A.D. Mazzochi, S.R. Miller, and G.W. Gokel:J. Am. Chem. Soc. 108, 4078 (1986).

    Google Scholar 

  29. R.D. Rogers and K.L. Kurihara:Inorg. Chem. 26, 1498 (1987).

    Google Scholar 

  30. M.S.B. Munson:J. Am. Chem. Soc. 87, 2332 (1965).

    Google Scholar 

  31. R.W. Taft, J.F. Wolf, J.L. Beauchamp, G. Scorrano, and E.M. Arnett:J. Am. Chem. Soc. 100, 1240 (1978).

    Google Scholar 

  32. J.S. Uppal, and R.H. Staley:J. Am. Chem. Soc. 104, 125 (1982).

    Google Scholar 

  33. M.M. Kappes, and R.H. Staley:J. Am. Chem. Soc. 104, 1813 (1982).

    Google Scholar 

  34. R.M. Izatt, R.E. Terry, B.L. Haymore, L.D. Hansen, N.K. Dalley, A.G. Avondet, and J.J. Christensen:J. Am. Chem. Soc. 98, 7620 (1976).

    Google Scholar 

  35. B. Douglas, D.H. McDaniel, and J.J. Alexander:Concepts and Models of Inorganic Chemistry, 2nd Edition, Wiley, New York, 1983, p. 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hancock, R.D. A molecular mechanics study of the selectivity of crown ethers for metal ions on the basis of their size. J Incl Phenom Macrocycl Chem 17, 63–80 (1994). https://doi.org/10.1007/BF00708001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708001

Key words

Navigation