Skip to main content
Log in

A mechanism of crack branching in polymethyl methacrylate and the origin of the bands on the surfaces of fracture

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

At low crack velocities the fracture of high molecular weight polymethyl methacrylate occurs by the separation of a thin craze layer ahead of, and coplanar with, the propagating crack tip. Above some critical velocity, about 400 m sec−1 at room temperature, craze branching or bifurcation is initiated. The craze branching does not cause any detectable surface roughening of the fracture surface until the crack tip stress is sufficient to initiate cracks in the craze branches. At this stage the formation of the branching craze-cracks causes surface roughening (bands or striations), a deceleration of the main fracture and a drop in the stress amplitude around the crack tip which is below that necessary to initiate branching crazes. The fracture then reverts back to the simpler mechanism, with no surface roughening. The repetition of this process gives rise to the banded appearance of the fracture surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Prosvirin,Poly. Mech. 4 (1968) 616.

    Google Scholar 

  2. G. I. Barenblatt andR. L. Salganik,PMM. J. Appl. Math. Mech. 27 (1963) 656.

    Google Scholar 

  3. J. J. Gilman, C. Knudsen andW. P. Walsh,J. Appl. Phys. 29 (1958) 601.

    Google Scholar 

  4. A. N. Stroh,J. Mech. Phys. Solids 8 (1960) 1.

    Google Scholar 

  5. M. J. Doyle, A. Maranci, E. Orowan andS. T. Stork,Proc. Roy. Soc. A329 (1972) 137.

    Google Scholar 

  6. M. J. Doyle,J. Mater. Sci. 10 (1975) 159.

    Google Scholar 

  7. J. J. Benbow,Proc. Phys. Soc. 78 (1961) 970.

    Google Scholar 

  8. W. Doll,J. Mater. Sci. 10 (1975) 935.

    Google Scholar 

  9. N. F. Mott,Proc. Phys. Soc. 189 (1947) 300.

    Google Scholar 

  10. W. F. Busse, E. Orowan andJ. E. Niemark,Bull. Amer. Phys. Soc., ser. 22 (1957) 125.

    Google Scholar 

  11. E. N. Delaney andW. F. Brace,J. Appl. Phys. 31 (1960) 2233.

    Google Scholar 

  12. A. Kobayashi, N. Ohtani andT. Sato,J. Appl. Poly. Sci. 18 (1974) 1625.

    Google Scholar 

  13. B. Cotterell,Int. J. Fract. Mech. 4 (1968) 209.

    Google Scholar 

  14. F. Zandman, “Publications Scientifiques et Technique du Ministè de l'Air” Vol. 291 (French Government Publication, Paris, 1954) Chap. 4.

    Google Scholar 

  15. J. J. Murray andD. Hull,J. Poly. Sci. 8B (1970) 159.

    Google Scholar 

  16. A. K. Green andP. L. Platt,Eng. Fract. Mech. 6 (1974) 71.

    Google Scholar 

  17. R. P. Kambour,J. Poly. Sci. A24 (1966) 349.

    Google Scholar 

  18. A. K. Green,J. Mater. Sci. 10 (1975) 2175.

    Google Scholar 

  19. R. P. Kusy, H. B. Lee andD. T. Turner,ibid. 11 (1976) 118.

    Google Scholar 

  20. R. P. Kusy andD. T. Turner,Polymer 18 (1977) 391.

    Google Scholar 

  21. E. Yoffe,Phil. Mag. 42 (1951) 739.

    Google Scholar 

  22. B. R. Baker,J. Appl. Mech,29 Trans. ASME Ser. E 84 (1962) 449.

    Google Scholar 

  23. M. L. Williams,ibid. 79 (1957) 109.

    Google Scholar 

  24. B. Cotterell,ibid. 86 (1964) 12.

    Google Scholar 

  25. K. N. G. Fuller, P. G. Fox andJ. E. Field,Proc. Roy. Soc. A341 (1975) 537.

    Google Scholar 

  26. W. Doll,Colloid Polymer Sci. 252 (1974) 880.

    Google Scholar 

  27. R. A. Lucas,Inter. J. Solids Structures 2 (1966) 205.

    Google Scholar 

  28. J. D. Eshelby,J. Mech. Phys. Solids 17 (1969) 177.

    Google Scholar 

  29. L. R. F. Rose,Inter. J. Fract. 12 (1976) 799.

    Google Scholar 

  30. K. Friedrich,J. Mater. Sci. 12 (1977) 640.

    Google Scholar 

  31. R. P. Kusy,ibid. 11 (1976) 1381.

    Google Scholar 

  32. R. P. Kusy, H. B. Lee andD. T. Turner,ibid. 12 (1977) 1694.

    Google Scholar 

  33. V. D. Frechette,Proc. Brit. Cer. Soc. 5 (1965) 97.

    Google Scholar 

  34. E. K. Beauchamp, “Fracture Mechanics of Ceramics” Vol. 3 edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York 1978) p. 823.

    Google Scholar 

  35. J. E. Field,Contemp. Phys. 12 (1971) 1.

    Google Scholar 

  36. M. Eichler,Z. Phys. 98 (1935) 280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, M.J. A mechanism of crack branching in polymethyl methacrylate and the origin of the bands on the surfaces of fracture. J Mater Sci 18, 687–702 (1983). https://doi.org/10.1007/BF00745566

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00745566

Keywords

Navigation