Skip to main content
Log in

The use of a δ-alumina fibre for metal-matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composites formed by infiltration of an array of fine alumina fibres with aluminium alloy melts have been investigated in terms of fabrication characteristics, microstructural features and mechanical properties. A production method has been developed in which the application of pressure ensures very low porosity levels and strong fibre-matrix bonding. Details of the transport phenomena occurring during fabrication have been explored with a view to optimizing selection of applied pressure, thermal fields, alloy composition and the structure of the fibrous preform. Microstructural examinations revealed an intimate fibre-matrix bond, but the virtual absence of any chemical reaction at the interface. Comparison of property measurements with data from unreinforced alloys revealed increased elastic moduli and marked improvement in tensile strength at elevated temperature, accompanied by reductions in elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Data sheet on RF Saffil, ICI Mond division, Runcorn, Cheshire, UK (1982).

  2. T. Donomoto, K. Funatani, N. Miura andN. Miyake, “Ceramic Fibre Reinforced Piston for High Performance Diesel Engines”, paper 830252, SAE Int. Congress and Exposition, Detroit, 28 February to 4 March (1983).

  3. H. Fukunaga andM. Kuriyama,Bull. JSME 25 (1982) 842.

    Google Scholar 

  4. H. Fukunaga, “Rotating Bending Fatigue Strength of Copper-precipitated Devitroceramic Fibre Reinforced Aluminium”, 24th Japanese Congress on Materials Research on Metallic Materials, March (1981) pp. 130–3.

  5. C. G. Levi, G. J. Abbaschian andR. Mehrabian,Met. Trans. 9A (1978) 697.

    Google Scholar 

  6. F. M. Hosking, F. Folgar Portillo, R. Wunderlin andR. Mehrabian,J. Mater. Sci. 17 (1982) 477.

    Google Scholar 

  7. K. J. Bhansali andR. Mehrabian,J. Metals 34(9) (1982) 30.

    Google Scholar 

  8. D. Webster,Met. Trans. 13A (1982) 1511.

    Google Scholar 

  9. B. F. Quigley, G. J. Abbaschian, R. Wunderlin andR. Mehrabian,ibid. 13A (1982) 93.

    Google Scholar 

  10. G. H. Pigott andJ. Ishmael, “A Strategy for the Design and Evaluation of a Safe Inorganic Fibre”, 5th International Symposium on Inhaled Particles, Cardiff, September (1980).

  11. K. Prabriputaloong andM. R. Piggott,Surf. Sci. 44 (1974) 585.

    Google Scholar 

  12. S. M. Wolf, A. P. Levitt andJ. Brown,Chem. Eng. Prog. 62 (1966) 74.

    Google Scholar 

  13. J. Brennan andJ. A. Pask,J. Amer. Ceram. Soc. 51 (1968) 569.

    Google Scholar 

  14. S. K. Rhee,ibid. 55 (1972) 300.

    Google Scholar 

  15. W. Kohler,Aluminium 7 (1975) 443.

    Google Scholar 

  16. R. Mehrabian, “A Fundamental Study of a New Fabrication Technique for Fiber Reinforced Aluminium Matrix Composites”, Final Report on US Army Research Office Contract DAAG29-76-G-0170, April (1980).

  17. S. V. Pepper,J. Appl. Phys. 47 (1976) 801.

    Google Scholar 

  18. A. Munitz, M. Metzger andR. Mehrabian,Met. Trans. 10A (1979) 1491.

    Google Scholar 

  19. A. K. Dhingra andW. H. Kreuger, “Fiber FP Continuous Yarn”, Report by E. I. DuPont de Nemours & Co. Inc., Wilmington, DL (1974).

    Google Scholar 

  20. UK Patent No. 1 567 328, May (1980).

  21. R. W. Grimshaw andC. Poole, UK Patent No. 1 595 280, August (1981).

  22. K. Ban, A. Daimara, Y. Muraoka andN. Miyake, UK Patent No. 2 088 761, June (1982).

  23. K. I. Portnoi, S. E. Salibekov, I. L. Swetlov andV. M. Chubarov, “Structure and Properties of Composite Materials” (Mashinostroenie, Moscow, 1979) in Russian.

    Google Scholar 

  24. S. T. Mileiko, in “Fabrication of Composites”, edited by A. Kelly and S. T. Mileiko (North Holland, Amsterdam, 1983) p. 287.

    Google Scholar 

  25. J. Szekely, “Fluid Flow Phenomena in Metals Processing” (Academic Press, New York, 1979) p. 237.

    Google Scholar 

  26. S. Ergun,Chem. Eng. Prog. 48 (1952) 93.

    Google Scholar 

  27. G. H. Geiger andD. R. Poirier, “Transport Phenomena in Metallurgy” (Addison-Wesley, New York, 1973) p. 94.

    Google Scholar 

  28. M. P. Seah andW. A. Dench,Surf. Interface Anal. 1 (1979) 2.

    Google Scholar 

  29. J. F. Watts andJ. E. Castle,J. Mater. Sci. 18 (1983) 2987.

    Google Scholar 

  30. W. H. J. Vernon, F. Wormwell andT. J. Nurse,J. Chem. Soc. (1939) 621.

  31. W. R. Symes andE. Rastetter, in 24th International Colloquium on Refractories, Aachen, September 1981.

  32. R. J. Arsenault andR. M. Fisher,Scripta Metall. 17 (1983) 67.

    Google Scholar 

  33. R. Elliott,Int. Met. Rev 22 (1977) 161.

    Google Scholar 

  34. W. Kurz andD. J. Fisher,Int. Met. Rev. 24 (1979) 177.

    Google Scholar 

  35. R. M. Christensen andR. M. Waals,J. Comp. Mater. 6 (1972) 518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clyne, T.W., Bader, M.G., Cappleman, G.R. et al. The use of a δ-alumina fibre for metal-matrix composites. J Mater Sci 20, 85–96 (1985). https://doi.org/10.1007/BF00555902

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00555902

Keywords

Navigation